• Title/Summary/Keyword: MEMS Fabrication Process

Search Result 189, Processing Time 0.028 seconds

A Small Size Broadband MEMS Antenna for 5 GHz WLAN Applications (5GHz 무선랜 응용을 위한 소형 광대역 MEMS 안테나)

  • Kim, Ji-Hyuk;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.603-604
    • /
    • 2006
  • A small size broadband microstrip patch antenna with small ground plane has been fabricated using MEMS. Multiple layer of high and low dielectric substrates are used to realize small size and broadband characteristics. The microstrip patch is divided into 4 pieces and each patch is connected to each other using a metal microstrip line. The fabrication process is very simple and only one mask is needed. Two types of microtrip antennas are fabricated. Type A is the microstrip antenna with metal lines and type B is the microstrip antenna without metal lines. The size of proposed microstip antenna is $8*12*2mm^3$ and the experimental results show that the antenna type A and type B have the bandwidth of 420MHz at 5.3 GHz and 480MHz at 5.66 GHz, respectively.

  • PDF

Fabrication of a Magnetostrictive Transpositioner using Thin Film Deposition and MEMS Techniques (박막성형 기술 및 MEMS 공정을 이용한 자기변형 위치변환기)

  • Lee, Heung-Shik;Cho, Chong-Du;Lee, Sang-Kyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1617-1620
    • /
    • 2007
  • This paper presents a magnetostrictive transpositioner and its fabrication process. To get a transposition movement without shifting or twisting, it is designed as an array type. To fabricate the suggested design, micromachining and selective DC magnetron sputtering processes are combined. TbDyFe film is sputter-deposited on the back side of the bulk micromachined transpositioner, with the condition as: Ar gas pressure below $1.2{\times}10^{-9}$ torr, DC input power of 180W and heating temperature of up to $250^{\circ}C$ for the wireless control of each array component. After the sputter process, magnetization and magnetostriction of each sample are measured. X-ray diffraction studies are also carried out to determine the film structure and thickness of the sputtered film. For the operation, each component of the actuator has same length and out-of-plane motion. Each component is actuated by externally applied magnetic fields up to 0.5T and motion of the device made upward movement. As a result, deflections of the device due to the movement for the external magnetic fields are observed.

  • PDF

Study of Manual Spray Coating Method for Fabricating Flexible Cantilever (유연성 높은 캔틸레버 제작을 위한 스프레이 코팅 방법 연구)

  • Kim, Ji-Kwan
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.366-369
    • /
    • 2017
  • This work presents a detailed study of several parameters on the spray coating method for fabricating a flexible cantilever. Conventionally, spin coating method have been widely used in the microelectromechanical system (MEMS) fabrication process. However, the major drawback of this method is the difficulties in protecting various topography with photoresist film, particularly when the device is manufactured in high aspect ratio. It is also a challenging process to form a small pattern in the etched area. On the other hand, the commercial spray coating systems are not advantageous from an economic perspective and the technique is also providing less efficient. In order to solve these issues, we have developed a manual spray coating system which can be efficiently used by combining the accessories available in the laboratory. The developed spray coating system consists of a spin-coater, motorized stage, a spray gun with the capable of controlling centrifugal force, injection amount, injection angle, and spray range. The major advantage of the proposed spray coating system is its reasonable fabrication cost. Secondly, the system can be easily disassembled after finishing the coating experiment. Owing to the mentioned advantages, we sincerely believe that the proposed spray coating system can be effectively used in many related applications.

Robust Optimal Design of a Decoupled Vibratory Microgyroscope Considering Fabrication Influence (공정영향을 고려한 비연성 진동형 마이크로 자이로스코프의 강건 최적 설계)

  • Jeong Hee-Moon;Ha Sung Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1065-1074
    • /
    • 2004
  • A robust optimal design considering fabrication influence has been performed for the decoupled vibratory microgyroscope fabricated by the bulk micromachining. For the analysis of the gyroscope, a design tool has been developed, by which user can perform the system level design considering electric signal process and the fabrication influence as well as mechanical characteristics. An initial design of the gyroscope is performed satisfying the performances of scale factor (or sensitivity) and phase delay, which depend on the frequency difference between driving and sensing resonant frequencies. The objective functions are formulated in order to reduce the variances of the frequency difference and the frequency in itself by fabrication error. To certify the results, the standard deviations are calculated through the Monte Caries Simulation (MCS) and compared initial deviation that is measured fabricated gyroscope chip.

The Active Dissolved Wafer Process (ADWP) for Integrating single Crystal Si MEMS with CMOS Circuits

  • Karl J. Ma;Yogesh B. Glanchandani;Khalil Najafi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.4
    • /
    • pp.273-279
    • /
    • 2002
  • This paper presents a fabrication technology for the integration of single crystal Si microstructures with on-chip circuitry. It is a dissolved wafer technique that combines an electro-chemical etch-stop for the protection of circuitry with an impurity-based etch-stop for the microstructures, both of which are defined in an n-epi layer on a p-type Si wafer. A CMOS op. amp. has been integrated with $p^{++}$ Si accelerometers using this process. It has a gain of 68 dB and an output swing within 0.2 V of its power supplies, unaffected by the wafer dissolution. The accelerometers have $3{\;}\mu\textrm{m}$ thick suspension beams and $15{\;}\mu\textrm{m}$ thick proof masses. The structural and electrical integrity of the fabricated devices demonstrates the success of the fabrication process. A variety of lead transfer methods are shown, and process details are discussed.

수송기계 엔진 MEMS 용 SiCN 마이크로 구조물 제작

  • Jeong, Jun-Ho;Jeong, Gwi-Sang
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.14-17
    • /
    • 2006
  • This paper describes a novel processing technique for fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for super-temperature MEMS applications. PDMS (polydimethylsiloxane) mold is fabricated on SU-8 photoresist using standard UV photolithographic process. Liquid precursor is injected into the PDMS mold. Finally, solid polymer structure is cross-linked using HIP (hot isostatic pressure) at $400^{\circ}C$, 205 bar Optimum pyrolysis and anneal ins conditions are determined to form a ceramic microstructure capable of withstanding over $1400^{\circ}C$. The fabricated SiCN ceramic microstructure has excel lent characteristics, such as shear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}\;{\Omega}$) and BDV (min. 1.2 kV) under optimum process condition.

  • PDF

A Study on plasma etching for PCR manufacturing (PCR 장치를 위한 플라즈마 식각에 관한 연구)

  • Kim, Jinhyun;Ryoo, Kunkul;Lee, Jongkwon;Lee, Yoonbae;Lee, Miyoung
    • Clean Technology
    • /
    • v.9 no.3
    • /
    • pp.101-105
    • /
    • 2003
  • Plasma etching technology has been developed since it is recognized that silicon etching is very crucial in MEMS(Micro Electro Mechanical System) technology. In this study ICP(Inductive Coupled Plasma) technology was used as a new plasma etching to increase ion density without increasing ion energy, and to maintain the etching directions. This plasma etching can be used for many MEMS applications, but it has been used for PCR(Polymerase Chain Reaction) device fabrication. Platen power, Coil power and process pressure were parameters for observing the etching rate changes. Conclusively Platen power 12W, Coil power 500W, etchng/passivation cycle 6/7sec gives the etching rate of $1.2{\mu}m/min$ and sidewall profile of $90{\pm}0.7^{\circ}$, exclusively. It was concluded from this study that it was possible to minimize the environmental effect by optimizing the etching process using SF6 gas.

  • PDF

Development of Integrated Optical Pickup for Small Form Factor Optical Disc Drive (Small Form Factor 광 디스크 드라이브용 초소형 집적형 광픽업 개발)

  • Cho, Eun-Hyoung;Sohn, Jin-Seung;Lee, Myung-Bok;Suh, Sung-Dong;Kim, Hae-Sung;Kang, Sung-Mook;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.3
    • /
    • pp.163-168
    • /
    • 2006
  • Small form factor optical pickup (SFFOP) corresponding to BD specifications is strongly proposed for the next-generation portable storage device. In order to generate SFFOP, small sized optical pickup has been fabricated. We have developed a small sited optical pickup that is called the integrated optical pickup (IOP). The fabrication method of this system is mainly dependant on the use of the wafer based micro fabrication technology, which has been used in MEMS process such as photolithography, reactive ion etching, wafer bonding, and packaging process. This approach has the merits for mass production and high assembling accuracy. In this study, to generate the small sized optical pickup for high recording capacity, IOP corresponding to BD specifications has been designed and developed, including three main parts, 1) design, fabrication and evaluation of objective lens unit, 2) design and fabrication of IOP and 3) evaluation process of FES and TES.

  • PDF

Development of a Novel Noncontact ECG Electrode by MEMS Fabrication Process

  • Mathias, Dakurah Naangmenkpeong;Park, Jaesoon;Kim, Eungbo;Joung, Yeun-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.150-154
    • /
    • 2016
  • Contact electrodes pose threats like inflammation, metal poisoning, and allergic reaction to the user during long term ECG procedure. Therefore, we present a novel noncontact electrocardiographic electrode designed through microelectromechanical systems (MEMS) process. The proposed ECG electrode consists of small inner and large outer circular copper plates separated by thin insulator. The inner plate enables capacitive transduction of bio-potential variations on a subject’s chest into a voltage that can be processed by a signal processing board, whereas the outer plate shields the inner plate from environmental electromagnetic noise. The electrode lead wires are also coaxially designed to prevent cables from coupling to ground or electronic devices. A prototype ECG electrode has an area of about 2.324 cm2, is very flexible and does not require power to operate. The prototype ECG electrode could measure ECG at about 500 um distance from the subject’s chest.

The Scattering Beam Measurement of the RBC and the Fabrication of the Micro Cell Biochip (적혈구의 산란빔 측정과 마이크로 세포 분석 바이오칩 제작)

  • Byun, In Soo;Kwon, Ki Jin;Lee, Joon Ha
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.116-121
    • /
    • 2014
  • Next future, The bio technology will be a rapidly developing. This paper is the scattering beam measurement of the red blood cell (RBC) and the fabrication of the micro cell biochip using the bio micro electro mechanical system (Bio-MEMS) process technology. The Major process method of Bio-MEMS technology was used the buffered oxide etchant (BOE), electro chemical discharge (ECD) and ultraviolet sensitive adhesives (UVSA). All experiments were the 10 times according to the process conditions. The experiment and research are required the ultraviolet expose, the micro fluid current, the cell control and the measurement of the output voltage Vpp (peak to peak) waveform by scattering angles. The transmitting and receiving of the laser beam was used the single mode optical fiber. The principles of the optical properties are as follows. The red blood cells were injected into the micro channel. The single mode optical fiber was inserting in the guide channel. The He-Ne laser beam was focusing in the single mode optical fiber. The transmission He-Ne laser beam is irradiating to the red blood cells. The manufactured guide channel consists of the four inputs and the four outputs. The red blood cell was allowed with the cylinder pump. The output voltage Vpp waveform of the scattering beam was measured with a photo detector. The receiving angle of the output optical fiber is $0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $15^{\circ}$. The magnitude of the output voltage Vpp waveform was measured in the decrease according to increase of the reception angles. The difference of the output voltage Vpp waveform is due differences of the light transmittance of the red blood cells.