• Title/Summary/Keyword: MEMS(Micro Electro Mechanical Systems)

Search Result 146, Processing Time 0.026 seconds

Fabrication and Electro-Mechanical Characteristic Analysis of Piezoelectric Micro-transformers (마이크로 압전변압기 제작 및 전기-기계적 특성 분석)

  • Kim, Seong-Kon;Seo, Young-Ho;Whang, Kyung-Hyun;Choi, Doo-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.231-234
    • /
    • 2008
  • For the applications which need a micro-power supply such as thin and flat displays, micro-robot, and micro-system, it is especially necessary to integrate the passive components because they typically need more than 2/3 of the space of the conventional circuit. Therefore, we have designed and fabricated a novel piezoelectric micro transformer using the PZT thin film and MEMS technologies for application to the energy supply device of the micro-systems. The dimensions of the micro-transformer is $1000{\mu}m\;{\times}\;400{\mu}m\;{\times}\;4.8{\mu}m$ $(length{\times}width{\times}thickness)$. The dynamic displacement of around $9.2{\pm}0.064{\mu}m$ was observed at 10 V. The dynamic displacement varied almost linearly with applied voltage. The average voltage gain (step-up ratio) was approximately 2.13 at the resonant frequency $(F_r=8.006KHz)$ and load resistance $(R_L)$ of 1 $M{\Omega}$.

Development of Micro Milling EDM and Analysis of Machined Characteristics (마이크로 밀링 EDM 머신 개발 및 가공특성 분석)

  • Kim, Sun-Ho;Lim, Han-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Micromachining is gaining popularity due to recent advancements in MEMS(Micro Electro Mechanical Systems). Using conventional micromachining, it is relatively difficult to produce moving components in the order of microns. Photolithography for silicon material has high accuracy machining, but it has low aspect ratio. X-ray lithography has ultra high accuracy machining, but it has expensive cost. Micro-EDM(electro discharge machining) has been gaining popularity as a new alternative method to fabricate micro-structures. In this study, Micro-EDM machine is developed available for fabricate micro-structures and two processes such as side cut EDM and milling EDM is proposed. Several sets of experiment results have been performed to study the characteristics of the machining process.

Nano-bending method for the measurement of the Poisson's ratio of MEMS thin films (MEMS 박막의 푸와송 비 측정을 위한 미소굽힘기법)

  • 김종훈;김정길;연순창;전윤광;한준희;이호영;김용협
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.57-62
    • /
    • 2003
  • Nano-bending method is presented to measure the Poisson's ratio of thinfilms for MEMS (Micro-Electro-Mechanical Systems) applicaiton. The douvle-ring specimen is designed and fabricated based on the surface micromachining process to facilitate the measurement of the Poisson's ratio. The Poisson's ratio can be obtained through analyzing the linear load-displacement relationship of the double ring specimen subjected to nano-indenter loading. The Present nano-bending mehod is an in-situ measurement approach due to the compatibility to the surface micromachining process. The Poisson's ratio is locally obtained at the location of the double ring specimen with micro dimension. To validate the nano-bending method, the Poisson's ratio of LPCVD (Low Pressure Chemical Vapor Deposition) poly-silicon with thickness of 2.3㎛ is investigated. Experimental results reveal that the Poisson's ratio of the poly-silicon film is 0.2569. The standard deviation of the nano-bending measurement for the stiffness of double ring specimens is 2.66%.

GEOP : A Security Aware Multipath Routing Protocol (GEOP : 보안 인식 다중경로 라우팅 프로토콜)

  • Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.151-157
    • /
    • 2010
  • Rapid technological advances in the area of micro electro-mechanical systems (MEMS) have spurred the development of small inexpensive sensors capable of intelligent sensing. A significant amount of research has been done in the area of connecting large numbers of these sensors to create robust and scalable Wireless Sensor Networks (WSNs). The resource scarcity, ad-hoc deployment, and immense scale of WSNs make secure communication a particularly challenging problem. Since the primary consideration for sensor networks is energy efficiency, security schemes must balance their security features against the communication and computational overhead required to implement them. In this paper, we combine location information and probability to create a new security aware multipath geographic routing protocol. The implemented result in network simulator (ns-2) showed that our protocol has a better performance under attacks.

Dual Surface Modifications of Silicon Surfaces for Tribological Application in MEMS

  • Pham, Duc-Cuong;Singh, R. Arvind;Yoon, Eui-Sung
    • KSTLE International Journal
    • /
    • v.8 no.2
    • /
    • pp.26-28
    • /
    • 2007
  • Si(100) surfaces were topographically modified i.e. the surfaces were patterned at micro-scale using photolithography and DRIE (Deep Reactive Ion Etching) fabrication techniques. The patterned shapes included micro-pillars and microchannels. After the fabrication of the patterns, the patterned surfaces were chemically modified by coating a thin DLC film. The surfaces were then evaluated for their friction behavior at micro-scale in comparison with those of bare Si(100) flat, DLC coated Si(100) flat and uncoated patterned surfaces. Experimental results showed that the chemically treated (DLC coated) patterned surfaces exhibited the lowest values of coefficient of friction when compared to the rest of the surfaces. This indicates that a combination of both the topographical and chemical modification is very effective in reducing the friction property. Combined surface treatments such as these could be useful for tribological applications in miniaturized devices such as Micro-Electro-Mechanical-Systems (MEMS).

Effects of Vortex Viscosity Variation on the Flowfields in a Micro-slot between Rotating Surfaces of Revolution (와점성 변화가 회전곡면으로 이루어진 마이크로 슬롯 유동장에 미치는 영향)

  • Choi, G.W.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.591-596
    • /
    • 2001
  • Micron-size mechanical devices are becoming more prevalent, both in commercial applications and in scientific inquiry. Within the last decade, a dramatic increase in research activities has taken place, mostly due to the rapidly expanding growth of applications in areas of MEMS(Micro-Electro-Mechanical Systems), bioengineering, chemical systems, and advanced energy systems. In this study, we have described the effects of vortex viscosity variation on the flowfields in a micro-slot between rotating surfaces of revolution using a micropolar fluid theory. In order to solve this problem, we have used boundary layer equations and applied non-zero values of the microrotation vector on the wall. The results are compared with the corresponding flow problems for Newtonian fluid. Results show that the coefficient $\delta$ controls the main part of velocity ${\upsilon}_x$ and the coefficient M controls the main part of microrotation component ${\Omega}_{\theta}$.

  • PDF

Studies on MEMS Inertial Switch Applicable to the Ignition SAU(Safe-Arm-Unit) of Propulsion System (추진기관 점화안전장치에 적용 가능한 MEMS 관성 스위치 연구)

  • Jang, Seung-Gyo;Jung, Hyung-Gyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.126-129
    • /
    • 2010
  • MEMS(micro electro-mechanical systems) inertial switch which is applicable to the ignition Safe-Arm- Unit of propulsion system is devised. The MEMS inertial switch is designed according to the general design procedure for conventional mechanical elements. Unlikely conventional MEMS accelerometer, threshold inertial switching mechanism is adopted which makes a MEMS element an abrupt switching in a certain acceleration level. By comparing the design data and test results of the specimen a small discrepancy in switching acceleration level is found which is presumably due to the nonlinear characteristics of the beam spring and the flexure hinge which are the main parts of the MEMS inertial switch.

  • PDF

Fatigue Test of MEMS Device: a Monolithic Inkjet Print

  • Park, Jun-Hyub;Oh, Yong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.798-807
    • /
    • 2004
  • A testing system was developed to improve the reliability of printhead and several printheads were tested. We developed a thermally driven monolithic inkjet printhead comprising dome-shaped ink chambers, thin film nozzle guides, and omega-shaped heaters integrated on the top surface of each chamber. To perform a fatigue test of an inkjet printhead, the testing system automatically detects a heating failure using a Wheatstone bridge circuit. Various models were designed and tested to develop a more reliable printhead. Two design parameters of the width of reinforcing layer and heater were investigated in the test. Specially., the reinforcing layer was introduced to improve the fatigue life of printhead. The life-span of heater with a reinforcing layer was longer than that without a reinforcing layer. The wider the heater was, the longer the life of printhead was.

Solutions of the Navier-Stokes equation in slip flow region (Slip flow 영역에서 Navier Stokes 방정식의 해석 연구)

  • Park, W.H.;Kim, T.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.597-602
    • /
    • 2000
  • In a MEMS(micro-electro mechanical system), the fluid may slip near the surface of a solid and have a discontinuous temperature profile. A numerical prediction in this slip flow region can provide a reasonable guide for the design and fabrication of micro devices. The compressible Navier-Stokes equation with Maxwell/smoluchowski boundary condition is solved for two simple systems; couette flow and pressure driven flow in a long channel. We found that the couette flow could be regarded as an incompressible system in low speed regions. For the pressure driven flow system, we observed nonlinear distribution of pressure in the long channel and numerical results showed a good agreement with the experimental results.

  • PDF

Buckling and vibration of porous sandwich microactuator-microsensor with three-phase carbon nanotubes/fiber/polymer piezoelectric polymeric nanocomposite face sheets

  • Arani, Ali Ghorbanpour;Navi, Borhan Rousta;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.805-820
    • /
    • 2021
  • In this research, the buckling and free vibration of three-phase carbon nanotubes/ fiber/ polymer piezoelectric nanocomposite face sheet sandwich microbeam with microsensor and micro-actuator surrounded in elastic foundation based on modified couple stress theory (MCST) is investigated. Three types of porous materials are considered for sandwich core. Higher order (Reddy) and sinusoidal shear deformation beam theories are employed for the displacement fields. Sinusoidal surface stress effects are extracted for sinusoidal shear deformation beam theory. The equations of motion are derived by Hamilton's principle and then the natural frequency and critical buckling load are obtained by Navier's type solution. The determined results are in good agreement with other literatures. The detailed numerical investigation for various parameters is performed for this microsensor-microactuator. The results reveal that the microsensor-microactuator enhanced by increasing of Skempton coefficient, carbon nanotubes diameter length to thickness ratio, small scale factor, elastic foundation, surface stress constants and reduction in porous coefficient, micro-actuator voltage and CNT weight fraction. The valuable results can be expedient for micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) systems.