• Title/Summary/Keyword: MEG

Search Result 137, Processing Time 0.019 seconds

Patch-based Cortical Source Modeling for EEG/MEG Distributed Source Imaging: A Simulation Study

  • Im Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.2
    • /
    • pp.64-72
    • /
    • 2006
  • The present study introduces a new cortical patch-based source model for EEG/MEG cortical source imaging to consider anatomical constraints more precisely. Conventional source models for EEG/MEG cortical source imaging have used coarse cortical surface mesh or sampled small number of vertices from fine surface mesh, and thus they failed to utilize full anatomical information which nowadays we can get with sub-millimeter modeling accuracy. Conventional ones placed a single dipolar source on each cortical patch and estimated its intensity by means of various inverse algorithms; whereas the suggested cortical patch-based model integrates whole cortical area to construct lead field matrix and estimates current density that is assumed to be constant in each cortical patch. We applied the proposed and conventional models to realistic EEG data and compared the results quantitatively. The quantitative comparisons showed that the proposed model can provide more precise spatial descriptions of neuronal source distribution.

Statistical network analysis for epilepsy MEG data

  • Haeji Lee;Chun Kee Chung;Jaehee Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.561-575
    • /
    • 2023
  • Brain network analysis has attracted the interest of neuroscience researchers in studying brain diseases. Magnetoencephalography (MEG) is especially proper for analyzing functional connectivity due to high temporal and spatial resolution. The application of graph theory for functional connectivity analysis has been studied widely, but research on network modeling for MEG still needs more. Temporal exponential random graph model (TERGM) considers temporal dependencies of networks. We performed the brain network analysis, including static/temporal network statistics, on two groups of epilepsy patients who removed the left (LT) or right (RT) part of the brain and healthy controls. We investigate network differences using Multiset canonical correlation analysis (MCCA) and TERGM between epilepsy patients and healthy controls (HC). The brain network of healthy controls had fewer temporal changes than patient groups. As a result of TERGM, on the simulation networks, LT and RT had less stable state than HC in the network connectivity structure. HC had a stable state of the brain network.

Antidiabetic Effect of Herbal Formula Containing Mori Folium, Euonymi Lignum Suberalatum and Ginseng Radix in db/db Mice (db/db 마우스에서 상엽, 귀전우, 인삼 복합처방의 항당뇨 활성)

  • Park, Keum-Ju;Han, Eun-Jung;Choi, Yun-Sook;Han, Gi-Cheol;Park, Jong-Seok;Chung, Sung-Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.1
    • /
    • pp.10-14
    • /
    • 2007
  • Type 2 diabetes mellitus relavant to insulin resistance is a chronic and hard to control. In order to develop an antidiabetic agent from natural products, anti-hyperglycemic effect of herbal formula containing Mori Follium, Euonymi Lignum Suberalatum and Ginseng Radix(MEG) was investigated in db/db mice. Treatment group was administered orally with MEG formula at a dose of 300 mg/kg for 5 weeks, and blood glucose, insulin and lipid levels were determined. MEG treatment group showed a marked decrease in fasting blood glucose level and insulin resistance index(IRI) compared to those in diabetic control. Improvement of insulin resistance(60.6%) was indicative of reducing lipid levels in plasma and triglyceride contents in muscle and adipose tissue. In addition, expressions of an insulin responsive gene, glucose transporter 4(Glut4), in muscle and adipose tissue were upregulated in MEG treatment group. Compared islet morphology between groups, MEG formula prevented the ${\beta}$-cell destruction caused by high blood glucose. Taken together, MEG formula can act as an anti-hyperglycemic agent with insulin sensitizing effect, and thus deserves a clinical trial in the future.

Artificial neural network for classifying with epilepsy MEG data (뇌전증 환자의 MEG 데이터에 대한 분류를 위한 인공신경망 적용 연구)

  • Yujin Han;Junsik Kim;Jaehee Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.2
    • /
    • pp.139-155
    • /
    • 2024
  • This study performed a multi-classification task to classify mesial temporal lobe epilepsy with left hippocampal sclerosis patients (left mTLE), mesial temporal lobe epilepsy with right hippocampal sclerosis (right mTLE), and healthy controls (HC) using magnetoencephalography (MEG) data. We applied various artificial neural networks and compared the results. As a result of modeling with convolutional neural networks (CNN), recurrent neural networks (RNN), and graph neural networks (GNN), the average k-fold accuracy was excellent in the order of CNN-based model, GNN-based model, and RNN-based model. The wall time was excellent in the order of RNN-based model, GNN-based model, and CNN-based model. The graph neural network, which shows good figures in accuracy, performance, and time, and has excellent scalability of network data, is the most suitable model for brain research in the future.

Antioxidative Activity of Brazilin on Potato Chips (Brazilin의 Potato Chip에 대한 항산화 효과)

  • Choi, Ung
    • The Korean Journal of Food And Nutrition
    • /
    • v.22 no.4
    • /
    • pp.662-668
    • /
    • 2009
  • Brazilin was added to frying oil used in the production of potato chips and their antioxidative effects against Caesalpinia sappan L. were evaluated. Additionally, the antioxidative activity was tested under the same conditions that commercial antioxidants are evaluated. The peroxide value of the oil and fat extracted from the potato chips was 134 meg/kg oil, 84.06 meg/kg oil, 117.10 meg/kg oil and 68.56 meg/kg oil in the control group, BHA(50 ppm)-BHT(50 ppm) group, $\delta$-tocopherol (100 ppm) group and brazilin(100 ppm) group after storage for 30 days. The antioxidative effect of chips subjected to these treatments were 1.6 times, 1.14 times and 1.97 times greater than that of the control. In addition, the peroxide value was lower in the brazilin(100 ppm) group than in the BHA(50 ppm)-BHT(50 ppm) group and this group also had a superior effect at inhibiting the production of peroxide. Furthermore, an experiment conducted at high temperature using the Rancimat resulted in the antioxidant activity of brazilin(100 ppm) and BHA(50 ppm)-BHT(50 ppm) being 1.53 and 1.4 times greater than that of commonly used synthetic antioxidants. Finally, brazilin(100 ppm) effectively decreased the palmitic acid ($C_{16:0}$)/linoleic acid($C_{18:2}$) value and increased the conjugated dienoic acid content to a greater degree than commercial antioxidants.

Cigarette Smoke Extract-Treated Mouse Airway Epithelial Cells-Derived Exosomal LncRNA MEG3 Promotes M1 Macrophage Polarization and Pyroptosis in Chronic Obstructive Pulmonary Disease by Upregulating TREM-1 via m6A Methylation

  • Lijing Wang;Qiao Yu;Jian Xiao;Qiong Chen;Min Fang;Hongjun Zhao
    • IMMUNE NETWORK
    • /
    • v.24 no.2
    • /
    • pp.3.1-3.23
    • /
    • 2024
  • Cigarette smoke extract (CSE)-treated mouse airway epithelial cells (MAECs)-derived exosomes accelerate the progression of chronic obstructive pulmonary disease (COPD) by upregulating triggering receptor expressed on myeloid cells 1 (TREM-1); however, the specific mechanism remains unclear. We aimed to explore the potential mechanisms of CSE-treated MAECs-derived exosomes on M1 macrophage polarization and pyroptosis in COPD. In vitro, exosomes were extracted from CSE-treated MAECs, followed by co-culture with macrophages. In vivo, mice exposed to cigarette smoke (CS) to induce COPD, followed by injection or/and intranasal instillation with oe-TREM-1 lentivirus. Lung function and pathological changes were evaluated. CD68+ cell number and the levels of iNOS, TNF-α, IL-1β (M1 macrophage marker), and pyroptosis-related proteins (NOD-like receptor family pyrin domain containing 3, apoptosis-associated speck-like protein containing a caspase-1 recruitment domain, caspase-1, cleaved-caspase-1, gasdermin D [GSDMD], and GSDMD-N) were examined. The expression of maternally expressed gene 3 (MEG3), spleen focus forming virus proviral integration oncogene (SPI1), methyltransferase 3 (METTL3), and TREM-1 was detected and the binding relationships among them were verified. MEG3 increased N6-methyladenosine methylation of TREM-1 by recruiting SPI1 to activate METTL3. Overexpression of TREM-1 or METTL3 negated the alleviative effects of MEG3 inhibition on M1 polarization and pyroptosis. In mice exposed to CS, EXO-CSE further aggravated lung injury, M1 polarization, and pyroptosis, which were reversed by MEG3 inhibition. TREM-1 overexpression negated the palliative effects of MEG3 inhibition on COPD mouse lung injury. Collectively, CSE-treated MAECs-derived exosomal long non-coding RNA MEG3 may expedite M1 macrophage polarization and pyroptosis in COPD via the SPI1/METTL3/TREM-1 axis.

Experimental Study on the Inhibition Effect of PVCap to Prevent Formation of Hydrate in Subsea Flowline (해저 유동관내 하이드레이트 형성 방지를 위한 PVCap의 억제효과에 관한 실험 연구)

  • Kim, Young-Min;Choi, Jun-Ho;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.56-64
    • /
    • 2020
  • This study presents the hydrate induction time of PVCap according to subcooling temperature, salt concentration, and MEG concentration in order to analyze the inhibition effect of PVCap in various production environments of offshore gas fields. A high-pressure hydrate generator was made for the hydrate formation experiments. It was verified that the apparatus had sufficient reliability by comparing the results of hydrate equilibrium conditions and induction time from the apparatus with published reference data. As the subcooling temperature increased from 6.1℃ to 12.1℃, the induction time of PVCap concentration of 0.1~1 wt% decreased. When the salt concentration increased from 3 wt% to 7 wt%, the induction time was reduced by up to 78% under the condition of 0.5 wt% PVCap due to polymer structure degradation by salt effect. In the case of HHI (hybrid hydrate inhibitor) made by mixing MEG 10 wt% and PVCap, the change in induction time was not large compared to PVCap 1 wt% due to the under-inhibition effect. On the other hand, the hydrate inhibition efficiency of HHI with MEG 20wt% increased 1.7 times compared to PVCap.