Acknowledgement
본 연구에 MEG 데이터를 제공해주신 서울대 의대 신경외과 정 천기 교수님께 깊이 감사드립니다.
References
- Agarwal C, Queen O, Lakkaraju H, and Zitnik M (2023). Evaluating explainability for graph neural networks, Scientific Data, 10, 144.
- Aoe J, Fukuma R, Yanagisawa T et al. (2019). Automatic diagnosis of neurological diseases using MEG signals with a deep neural network, Scientific Reports, 9, 5057.
- Cho K, Van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, and Bengio Y (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation, In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Mexico, 1724-1734.
- Demir A, Koike-Akino T, Wang Y, Haruna M, and Erdogmus D (2021). EEG-GNN: Graph neural networks for classification of electroencephalogram (EEG) signals, In Proceedings of 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Guadalajara, Mexico (virtual), 1061-1067.
- Fan W, Ma Y, Li Q, He Y, Zhao E, Tang J, and Yin D (2019). Graph neural networks for social recommendation, The World Wide Web Conference, 417-426.
- Freeman LC (1977). A set of measures of centrality based on betweenness, Sociometry, 40, 35-41. https://doi.org/10.2307/3033543
- Freeman LC (1978). Centrality in social networks conceptual clarification, Social Networks, 1, 215-239. https://doi.org/10.1016/0378-8733(78)90021-7
- Gadgil S, Zhao Q, Pfefferbaum A, Sullivan EV, Adeli E, and Pohl KM (2020). Spatio-temporal graph convolution for resting-state fMRI analysis. In Medical Image Computing and Computer Assisted Intervention-MICCAI 2020 (pp. 528-538), Springer, Cham, Available from : doi: 10.1007/978-3-030-59728-3 52
- Giovannetti A, Susi G, Casti P, Mencattini A, Pusil S, Lopez ME, Di Natale C, and Martinelli E (2021). Deep-MEG: Spatiotemporal CNN features and multiband ensemble classification for predicting the early signs of Alzheimer's disease with magnetoencephalography, Neural Computing and Applications, 33, 14651-14667. https://doi.org/10.1007/s00521-021-06105-4
- Gurney K (1997). An introduction to neural networks (pp. 13-16), UCL press, London.
- Han YJ and Kim JH (2023). Comparison of TERGM and SAOM: Statistical analysis of student network data, The Korean Journal of Applied Statistics, 36, 1-19. https://doi.org/10.5351/KJAS.2023.36.1.001
- Hochreiter S and Schmidhuber J (1997). Long short-term memory, Neural Computation, 9, 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Huang SG, Xia J, Xu L, and Qiu A (2022). Spatio-temporal directed acyclic graph learning with attention mechanisms on brain functional time series and connectivity, Medical Image Analysis, 77, 102370.
- Jin SH and Chung CK (2017). Electrophysiological resting-state biomarker for diagnosing mesial temporal lobe epilepsy with hippocampal sclerosis, Epilepsy Research, 129, 138-145. https://doi.org/10.1016/j.eplepsyres.2016.11.018
- Jin SH, Jeong W, and Chung CK (2015). Mesial temporal lobe epilepsy with hippocampal sclerosis is a network disorder with altered cortical hubs, Epilepsia, 56, 772-779. https://doi.org/10.1111/epi.12966
- Jukic S, Saracevic M, Subasi A, and Kevric J (2020). Comparison of ensemble machine learning methods for automated classification of focal and non-focal epileptic EEG signals, Mathematics, 8, 1481.
- Kostas D, Pang EW, and Rudzicz F (2019). Machine learning for MEG during speech tasks, Scientific Reports, 9, 1-13. https://doi.org/10.1038/s41598-019-38612-9
- Krizhevsky A, Sutskever I, and Hinton GE (2017). Imagenet classification with deep convolutional neural networks, Communications of the ACM, 60, 84-90. https://doi.org/10.1145/3065386
- LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, and Jackel LD (1989). Backpropagation applied to handwritten zip code recognition, Neural Computation, 1, 541-551. https://doi.org/10.1162/neco.1989.1.4.541
- LeCun Y, Bottou L, Bengio Y, and Haffner P (1998). Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86, 2278-2324. https://doi.org/10.1109/5.726791
- Li Z, Hwang K, Li K, Wu J, and Ji T (2022). Graph-generative neural network for EEG-based epileptic seizure detection via discovery of dynamic brain functional connectivity, Scientific Reports, 12, 18998.
- Mao WL, Fathurrahman HIK, Lee Y, and Chang TW (2020). EEG dataset classification using CNN method, Journal of Physics: Conference Series, 1456, 012017, Available from: doi: 10.1088/1742-6596/1456/1/012017
- Memarian N, Kim S, Dewar S, Engel J, and Staba RJ (2015). Multimodal data and machine learning for surgery outcome prediction in complicated cases of mesial temporal lobe epilepsy, Computers in Biology and Medicine, 64, 67-78. https://doi.org/10.1016/j.compbiomed.2015.06.008
- Nissen IA, Stam CJ, Van Straaten ECW et al. (2018). Localization of the epileptogenic zone using interictal MEG and machine learning in a large cohort of drug-resistant epilepsy patients, Frontiers in Neurology, 9, 647.
- Orchard ER, Ward PG, Chopra S, Storey E, Egan GF, and Jamadar SD (2021). Neuroprotective effects of motherhood on brain function in late life: A resting-state fMRI study, Cerebral Cortex, 31, 1270-1283. https://doi.org/10.1093/cercor/bhaa293
- Pantazis D and Adler A (2021). MEG source localization via deep learning, Sensors, 21, 4278.
- Petrosian AA, Prokhorov DV, Lajara-Nanson W, and Schiffer RB (2001). Recurrent neural network-based approach for early recognition of Alzheimer's disease in EEG, Clinical Neurophysiology, 112, 1378-1387. https://doi.org/10.1016/S1388-2457(01)00579-X
- Qiu J, Tang J, Ma H, Dong Y, Wang K, and Tang J (2018). Deepinf: Social influence prediction with deep learning, In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, UK, 2110-2119.
- Roy S, Kiral-Kornek I, and Harrer S (2019). ChronoNet: A deep recurrent neural network for abnormal EEG identification, Artificial Intelligence in Medicine,(pp. 47-56), Springer, Cham. doi: 10.1007/978-3-030-21642-9_8
- Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, and Monfardini G (2008). The graph neural network model, IEEE Transactions on Neural Networks, 20, 61-80. https://doi.org/10.1109/TNN.2008.2005605
- Song K, Park H, Lee J, Kim A, and Jung J (2023). COVID-19 infection inference with graph neural networks, Scientific Reports, 13, 11469.
- Tang X, Liu Y, Shah N, Shi X, Mitra P, and Wang S (2020). Knowing your fate: Friendship, action and temporal explanations for user engagement prediction on social apps, In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, CA, US, 2269-2279.
- Thompson WH, Brantefors P, and Fransson P (2017). From static to temporal network theory: Applications to functional brain connectivity, Network Neuroscience, 1, 69-99. https://doi.org/10.1162/NETN_a_00011
- Tomlinson SB, Porter BE, and Marsh ED (2017). Interictal network synchrony and local heterogeneity predict epilepsy surgery outcome among pediatric patients, Epilepsia, 58, 402-411. https://doi.org/10.1111/epi.13657
- Usman SM, Usman M, and Fong S (2017). Epileptic seizures prediction using machine learning methods, Computational and mathematical methods in medicine, 2017.
- Wein S, Malloni WM, Tome AM, Frank SM, Henze GI, W ' ust S, Greenlee MW, and Lang EW (2021). A graph neural network framework for causal inference in brain networks, Scientific Reports, 11, 8061.
- Zhou M, Tian C, Cao R, Wang B, Niu Y, Hu T, Guo H, and Xiang J (2018). Epileptic seizure detection based on EEG signals and CNN, Frontiers in Neuroinformatics, 12, 95.