• 제목/요약/키워드: MDA-MB 231 cells

검색결과 244건 처리시간 0.027초

Anticancer Activity of Glycyrrhiza cultivar Extracts in Breast Cancer Cells

  • Kang, Myunghoon;Kim, Minhee;Kim, Wonnam
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.89-89
    • /
    • 2019
  • Several studies report the anticancer effect of Glycyrrhiza glabra (G. glabra), Glycyrrhiza uralensis (G. uralensis) and their compounds. However, the anticancer effect of Glycyrrhiza cultivar roots are limited. In this study, we compared the anticancer effect of Glycyrrhiza cultivar (Wongam and Shinwongam) extracts with G. glabra and G. uralensis extracts in breast cancer cell lines. Freeze dried Glycyrrhiza root extracts were dissolved in cell culture media at 2 mg/mL and filtered by $0.2{\mu}m$ filter. Glycyrrhiza root extracts were serially diluted at the concentrations of $10{\mu}g/mL$, $100{\mu}g/mL$, $200{\mu}g/mL$, $400{\mu}g/mL$, $800{\mu}g/mL$, $1000{\mu}g/mL$ and $2000{\mu}g/mL$. MCF-7 and MDA-MB-231 breast cancer cells were treated with different concentrations of Glycyrrhiza root extracts and the cell viability was measured using MTT assay. In MCF-7 cells, G. glabra showed no significant difference with Wongam and showed significant difference with Shinwongam at $1000{\mu}g/mL$ (G. glabra 101.2% and Shinwongam 82.68%) and $2000{\mu}g/mL$ (G. glabra 83.07% and Shinwongam 54.05%). G. uralensis showed significant difference with Wongam at $2000{\mu}g/mL$ (G. uralensis 66.48% and Wongam 95.02%) and showed no significant difference with Shinwongam. In MDA-MB-231 cells, G. glabra showed no significant difference with both Wongam and Shinwongam. G. uralensis showed significant difference with Wongam at $2000{\mu}g/mL$ (G. uralensis 72.59% and Wongam 93.47%) and showed no significant difference with Shinwongam. In conclusion, the current study demonstrated that G, glabra and G. uralensis compared with Wongam, and Shinwongam at low concentrations ($10{\mu}g/mL{\sim}800{\mu}g/mL$) display similar cytotoxic potency.

  • PDF

TP53I11 suppresses epithelial-mesenchymal transition and metastasis of breast cancer cells

  • Xiao, Tongqian;Xu, Zhongjuan;Zhang, Hai;Geng, Junsa;Qiao, Yong;Liang, Yu;Yu, Yanzhen;Dong, Qun;Suo, Guangli
    • BMB Reports
    • /
    • 제52권6호
    • /
    • pp.379-384
    • /
    • 2019
  • Epithelial-mesenchymal transition (EMT) is widely-considered to be a modulating factor of anoikis and cancer metastasis. We found that, in MDA-MB-231 cells, TP53I11 (tumor protein P53 inducible protein 11) suppressed EMT and migration in vitro, and inhibited metastasis in vivo. Our findings showed that hypoxic treatment upregulated the expression of $HIF1{\alpha}$, but reduced TP53I11 protein levels and TP53I11 overexpression reduced $HIF1{\alpha}$ expression under normal culture and hypoxicconditions, and in xenografts of MDA-MB-231 cells. Considering $HIF1{\alpha}$ is a master regulator of the hypoxic response and that hypoxia is a crucial trigger of cancer metastasis, our study suggests that TP53I11 may suppress EMT and metastasis by reducing $HIF1{\alpha}$ protein levels in breast cancer cells.

IN-VITRO STUDY OF CO2 EXTRACT OF TERMINALIA CHEBULA IN BREAST CANCER CELL LINE MD-MBA-231

  • Chandil, Shachi;Bamoriya, Harikishan;More, D.B.
    • 셀메드
    • /
    • 제11권3호
    • /
    • pp.16.1-16.7
    • /
    • 2021
  • Cancer is an abnormal growth of cells in body which leads to death. These cells are born due to imbalance in cell proliferation mechanism. In 2018, WHO released new statistics on cancer incidence, mortality, and prevalence worldwide i.e., GLOBOCAN 2018 estimates for 28 types of cancer in which more prevalence of cervix and breast cancer. According to survey, in India about 7.8 million cancer deaths and 11.5 million new cases arise in 2018, which will increase to 19.3 million new cases per year by 2025. Though breast cancer as such is not explained anywhere in Ayurvedic compendia, correlations can be done with the Stana Arbuda. Ayurveda, the ancient system of medicine came into existence 1000's of years ago with an objective of maintaining the health of people and treating diseases. Many herbs used in Ayurveda have been screened for activity against cancer and in-vitro and in-vivo studies have given promising leads. The plant, called as "Mother of Medicine", Haritaki has been extensively studied for its various ailments because of its extraordinary healing potency. Haritaki (Terminalia chebula Retz.), Family: Combretaceae have a great therapeutic value and is widely distributed in India. Dried fruit of Terminalia chebula contains high quantities phenolic compounds consist of ellagic acid, gallic acid and chebulic acid. The fruit extract of T. chebula is having different biological properties like anticancer, antioxidant, hepatic and renal protective activities etc. In this study, we focus on the use of CO2 extract of Terminalia chebula, on the breast cancer cell line MDA-MB-231. All tests proved that CO2 extract of Terminalia chebula containing active chemical component, therefore our experiment showed the positive results for CO2 extract of Terminalia chebula against breast cancer cell line cancer MDA-MB-231. The MTT assay results were used to evaluate the anti-cancer activity of the extract. The percentage of cell growth and cell viability were calculated from tabulated result values of MTT assay. Cell viability MTT assay also showed significant growth inhibition, at the same time statistical analysis of MTT assay also proved significant results.

Reactive oxygen species-dependent apoptosis induction by water extract of Citrus unshiu peel in MDA-MB-231 human breast carcinoma cells

  • Kim, Min Yeong;Choi, Eun Ok;HwangBo, Hyun;Kwon, Da He;Ahn, Kyu Im;Kim, Hong Jae;Ji, Seon Yeong;Hong, Su-Hyun;Jeong, Jin-Woo;Kim, Gi Young;Park, Cheol;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • 제12권2호
    • /
    • pp.129-134
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Although several recent studies have reported the anti-cancer effects of extracts or components of Citrus unshiu peel, which has been used for various purposes in traditional medicine, the molecular mechanisms for their effects remain unclear. In the present study, the anti-cancer activity of a water-soluble extract of C. unshiu peel (WECU) in MDA-MB-231 human breast carcinoma cells at the level of apoptosis induction was investigated. MATERIALS/METHODS: Cytotoxicity was evaluated using the MTT assay. Apoptosis was detected using DAPI staining and flow cytometry analyses. Mitochondrial membrane potential, reactive oxygen species (ROS) assay, caspase activity and Western blotting were used to confirm the basis of apoptosis. RESULTS: The results indicated that WECU-induced apoptosis was related to the activation of caspase-8, and -9, representative initiator caspases of extrinsic and intrinsic apoptosis pathways, respectively, and caspase-3 accompanied by proteolytic degradation of poly(ADP-ribose) polymerase and down-regulation of the inhibitors of apoptosis protein family members. WECU also increased the pro-apoptotic BAX to anti-apoptotic BCL-2 ratio, loss of mitochondrial membrane potential and cytochrome c release from mitochondria to cytoplasm. Furthermore, WECU provoked the generation of ROS, but the reduction of cell viability and induction of apoptosis by WECU were prevented when ROS production was blocked by antioxidant N-acetyl cysteine. CONCLUSIONS: These results suggest that WECU suppressed proliferation of MDA-MB-231 cells by activating extrinsic and intrinsic apoptosis pathways in a ROS-dependent manner.

Constitutive Activation of $p70^{S6k}$ in Cancer Cells

  • Kwon, Hyoung-Keun;Bae, Gyu-Un;Yoon, Jong-Woo;Kim, Yong-Kee;Lee, Hoi-Young;Lee, Hyang-Woo;Han, Jeung-Whan
    • Archives of Pharmacal Research
    • /
    • 제25권5호
    • /
    • pp.685-690
    • /
    • 2002
  • The mitogen-stimulated serine/threonine kinase $p70^{S6k}$ plays an important role in the progression of cells from $G_0/G$_1$$ to S phase of the cell cycle by translational up-regulation of a family of mRNA transcripts family of mRNA transcripts which contain polypyrimidine tract at their 5 transcriptional start site. Here, we report that $p70^{S6k}$ was constitutively phosphorylated and activated to various degrees in serum-deprived AGS, A2058, HT-1376, MG63, MCF7, MDA-MB-435S, MDA-MB-231 and MB-157. Rapamycin treatment induced a significant dephosphorylation and inactivation of $p70^{S6k}$ in all cancer cell lines, while wortmannin, a specific inhibitor of PI3-K, caused a mild dephosphorylation of $p70^{S6k}$ in AGS, MDA-MB-435S and MB-157. In addition, SQ20006, methylxanthine phosphodiesterase inhibitor, reduced the phosphorylation of $p70^{S6k}$ in all cancer cells tested. Consistent with inhibitory effect of rapamycin on $p70^{S6k}$ activity, rapamycin inhibited [$^3H$]-thymidine incorporation and increased the number of cells at $G_{0}G_{1}$ phase. Furthermore, these inhibitory effects were accompanied by the decrease in growth of cancer cells. Taken together, the results indicate that the antiproliferative activity of rapamycin might be attributed to cell cycle arrest at $G_{0}G_{1}$ phase in human cancer cells through the inhibition of constitutively activated $p70^{S6k}$ of cancer cells and suggest $p70^{S6k}$ as a potential target for therapeutic strategies aimed at preventing or inhibiting tumor growth.

인체 유방암세포에서 TPA에 의해 유도된 matrix metalloproteinases 활성 및 침윤성 증대에 미치는 genistein의 영향 (Genistein Suppresses TPA-Induced Matrix Metalloproteinases Activity and Cell Invasion in Human Breast Adenocarcinoma Cells)

  • 최영현;김성옥
    • 생명과학회지
    • /
    • 제22권7호
    • /
    • pp.964-969
    • /
    • 2012
  • Genistein은 대두 및 그들의 부산물에 풍부하게 존재하는 isoflavone의 일종으로 정상세포에서는 독성을 나타내지 않는 범위에서 다양한 in vitro 및 in vivo 모델에서 암세포의 증식을 효과적으로 억제할 수 있는 천연물로 알려져 있다. 본 연구에서는 MCF-7 및MDA-MB-231 유방암세포에서 matrix metalloproteinases (MMPs)의 활성 및 발현과 침윤성에 미치는 genistein의 영향을 조사하였다. 본 연구의 결과에 의하면 genistein은 12-O-tetradecanoyl phorbol-13-acetate (TPA) 처리에 의하여 활성화된 MMP-2 및 -9의 활성을 유의적으로 차단하였으며, 이는 전사 및 번역 수준에서 MMP-2 및 -9의 발현 억제와 연관성이 있었다. 또한 matrigel invasion assay를 통하여 genistein은 두 유방암세포의 침윤성을 완벽하게 차단하였음을 관찰하였으며, 이러한 효과는 genistein의 세포독성 효과에 의한 것이 아니었음을 알 수 있었다. 비록 in vivo 동물 실험을 통한 부가적인 연구의 필요성이 있으나, 본 연구의 결과는 genistein이 암의 전이를 억제할 수 있는 효과적인 식이 소재임을 보여주는 것이다.

유방암 세포와 간암세포에 있어서 에스트로겐 수용체의 전사조절기능에 대한 Xenobiotic 핵 수용체 (Constitutive Androstane Receptor, Steroid and Xenobiotic Receptor, Peroxisome-Proliferator-Activated Receptor γ )의 영향 비교분석 (Comparison and Analysis between Human Breast Cancer Cells and Hepatoma Cells for the Effects of Xenobiotic Nuclear Receptors (Constitutive Androstane Receptor, Steroid and Xenobiotic Receptor, and Peroxisome-Proliferator-Activated Receptor γ ) on the Transcriptional Activity of Estrogen Receptor)

  • 민계식
    • 생명과학회지
    • /
    • 제13권3호
    • /
    • pp.314-323
    • /
    • 2003
  • 지금까지 estrogen 호르몬이 유방암의 발생과 진전에 관여한다는 사실을 뒷받침 할 수 있는 여러 가지 증거가 제시되어 왔지만, 암화에 관여하고 있는 estrogen의 분자생물학적 작용기전에 대해서는 아직 명확히 알려져 있지 않다. 유방암 세포의 발암현상은 다양한 핵 수용체들과 이들 각각의 신호전달경로들 사이의 기능적 상호교류 (Functional Cross-talk)에 의해 조절되는 것으로 추측되고 있다. 그러므로, 유방암세포의 성장과 증식에 관여하는 신호전달경로중에서 estrogen의 작용을 조절할 수 있는 핵 수용체를 밝혀내고, 이러한 수용체와 estrogen receptor사이에 어떠한 기능적 상호교류가 일어나는지를 규명하는 것은 암화와 관련된 estrogen의 분자생물학적 작용기전을 이해하는 데 중요한 진전을 가져올 수 있다. 따라서 본 연구의 목적은 유방암세포 내에서 estrogen의 작용이 xenobiotic nuclear receptor에 의해 조절되는지를 규명하기 위하여, 두 종류의 유방암세포인 estrogen receptor가 발현되는 MCF-7 세포와 ER의 발현이 일어나지 않는 MDA-MB-231세포를 배양하여, 에스트로겐에 의해 전사가 촉진되는 보고유전자의 발현이 CAR, SXR, 그리고 PPAR${\gamma}$에 의해서 어떻게 영향을 받는지를 조사하고 그 결과를 간암세포에서의 반응과 비교 분석하였다. 최근에 보고된 연구결과와 일치하게, xenobiotic nuclear receptor가 간세포에서 일어나는 에스트로겐 수용체의 신호전달경로에 영향을 줄 수 있음을 확인하였다. PPAR${\gamma}$를 제외한 핵 수용체 CAR와 SXR은 ER의 전사활성 효과를 현저하게 또는 어느 정도 각각 감소시켰다. Hep G2세포에서와는 달리 유방암세포에서는 조사된 세가지의 xenobiotic 핵 수용체가 ER의 전사활성에 그다지 영향을 미치지 않거나 유방암세포의 종류와 각각의 수용체에 따라서 다소 촉진하는 경향을 나타내었다. MCF-7 세포에서는 CAR와 PPAR${\gamma}$을 제외한 SXR이 ER의 transactivation 효과를 약간 촉진한 반면 MDA-MB-231세포는 SXR을 제외한 CAR와 PPAR${\gamma}$에 의해 ER의 transactivation 효과가 약간 증가되는 경향을 보였다. 이러한 결과는 유방암세포에서는 CAR, SXR, PPAR${\gamma}$과 같은 xenobiotic nuclear receptor에 의한 ER transactivation 효과가 간암세포와는 다르게 나타나며, 유방암의 종류에 따라서 endogenous CAR, SXR, PPAR${\gamma}$수용체가 다르게 발현됨으로써 이들에 대한 반응이 서로 상이한 특징을 나타낼 수 있을 것으로 사료된다. 따라서 estrogen receptor에 의해 매개되는 estrogn의 전사활성조절기전이 표적세포에 따라 다른 경로를 포함 할 수 있음을 시사한다.

Anti-invasive Activity against Cancer Cells of Phytochemicals in Red Jasmine Rice (Oryza sativa L.)

  • Pintha, Komsak;Yodkeeree, Supachai;Pitchakarn, Pornsirit;Limtrakul, Pornngarm
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권11호
    • /
    • pp.4601-4607
    • /
    • 2014
  • Red rice contains pharmacological substances including phenolics, oryzanol, tocotrienol and tocopherol. Recently, red rice extract has been employed as a source of antioxidants for inhibition of tumor growth. This study was carried out to evaluate the anti-invasion effects of red rice extract fractions on cancer cells. It was found that at $100{\mu}g/ml$ of crude ethanolic extract (CEE), hexane fraction (Hex) and dichloromethane fraction (DCM) could reduce HT1080 and MDA-MB-231 cancer cell invasion. Hex and DCM revealed higher potency levels than CEE, whereas an ethyl acetate fraction (EtOAc) had no effect. Gelatin zymography revealed that Hex decreased the secretion and activity of matrix metalloproteinase-2 and -9 (MMP-2 and-9). In contrast, the DCM fraction exhibited slightly effect on MMPs secretion and had no effect on MMPs activity. Collagenase activity was significantly inhibited by the Hex and DCM fractions. High amounts of ${\gamma}$-oryzanol and ${\gamma}$-tocotrienol were found in the Hex and DCM fractions and demonstrated an anti-invasion property. On the other hand, proanthocyanidin was detected only in the CEE fraction and reduced MDA-MB-231 cells invasion property. These observations suggest that proanthocyanidin, ${\gamma}$-oryzanol and ${\gamma}$-tocotrienol in the red rice fractions might be responsible for the anti invasion activity. The red rice extract may have a potential to serve as a food-derived chemotherapeutic agent for cancer patients.

Non-Benzoquinone Geldanamycin Analog, WK-88-1, Induces Apoptosis in Human Breast Cancer Cell Lines

  • Zhao, Yu-Ru;Li, Hong-Mei;Zhu, Meilin;Li, Jing;Ma, Tao;Huo, Qiang;Hong, Young-Soo;Wu, Cheng-Zhu
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권4호
    • /
    • pp.542-550
    • /
    • 2018
  • Heat shock protein 90 (Hsp90) is treated as a molecular therapeutic target for the prevention and treatment of cancer. Geldanamycin (GA) was the first identified natural Hsp90 inhibitor, but hepatotoxicity has limited its clinical application. Nevertheless, a new GA analog (WK-88-1) with the non-benzoquinone skeleton, obtained from genetically engineered Streptomyces hygroscopicus, was found to have anticancer activity against two human breast cancer cell lines. WK-88-1 produced concentration-dependent inhibition of cell proliferation, cell cycle arrest, and apoptosis in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 cell lines. Detailed analysis showed that WK-88-1 downregulated some key cell cycle molecules (CDK1 and cyclin B1) and lead to $G_2/M$ cell cycle arrest. Further studies also showed that WK-88-1 could induce human breast cancer cell apoptosis by downregulating Hsp90 client proteins (Akt, p-Akt, IKK, c-Raf, and Bcl-2), decreasing the ATP level, increasing reactive oxygen species production, and lowering the mitochondrial membrane potential. Meanwhile, we discovered that WK-88-1 significantly decreased the levels of Her-2 and $ER-{\alpha}$ in MCF-7 cells but not in MDA-MB-231 cells. In addition, WK-88-1 significantly increased caspase-3, -8, and -9 activities and the cleavage of PARP in a concentration-dependent manner (with the exception of caspase-3 and PARP in MCF-7 cells). Taken together, our preliminary results suggest that WK-88-1 has the potential to play a role in breast cancer therapy.

Emodin Inhibits Breast Cancer Cell Proliferation through the ERα-MAPK/Akt-Cyclin D1/Bcl-2 Signaling Pathway

  • Sui, Jia-Qi;Xie, Kun-Peng;Zou, Wei;Xie, Ming-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권15호
    • /
    • pp.6247-6251
    • /
    • 2014
  • Background: The aim of the present study was to investigate the involvement of emodin on the growth of human breast cancer MCF-7 and MDA-MB-231 cells and the estrogen (E2) signal pathway in vitro. Materials and Methods: MTT assays were used to detect the effects of emodin on E2 induced proliferation of MCF-7 and MDA-MB-231 cells. Flow cytometry (FCM) was applied to determine the effect of emodin on E2-induced apoptosis of MCF-7 cells. Western blotting allowed detection of the effects of emodin on the expression of estrogen receptor ${\alpha}$, cyclin D1 and B-cell lymphoma-2 (Bcl-2), mitogen-activated protein kinases (MAPK) and phosphatidylinostiol 3-kinases (PI3K). Luciferase assays were emplyed to assess transcriptional activity of $ER{\alpha}$. Results: Emodin could inhibit E2-induced MCF-7 cell proliferation and anti-apoptosis effects, and arrest the cell cycle in G0/G1 phase, further blocking the effect of E2 on expression and transcriptional activity of $ER{\alpha}$. Moreover, Emodin influenced the ER ${\alpha}$ genomic pathway via downregulation of cyclin D1 and Bcl-2 protein expression, and influenced the non-genomic pathway via decreased PI3K/Akt protein expression. Conclusions: These findings indicate that emodin exerts inhibitory effects on MCF-7 cell proliferation via inhibiting both non-genomic and genomic pathways.