• Title/Summary/Keyword: MCU

Search Result 503, Processing Time 0.025 seconds

Infrared Light Absorbance: a New Method for Temperature Compensation in Nondispersive Infrared CO2 Gas Sensor

  • Yi, Seung Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.303-311
    • /
    • 2020
  • Nondispersive infrared CO2 gas sensor was developed after the simulation of optical cavity structure and assembling the optical components: IR source, concave reflectors, Fresnel lens, a hollow disk, and IR detectors. By placing a hollow disk in front of reference IR detector, the output voltages are almost constant value, near to 70.2 mV. The absorbance of IR light, Fa, shows the second order of polynomial according to ambient temperatures at 1,500 ppm. The differential output voltages and the absorbance of IR light give a higher accuracy in estimations of CO2 concentrations with less than ± 1.5 % errors. After implementing the parameters that are dependent upon the ambient temperatures in microcontroller unit (MCU), the measured CO2 concentrations show high accuracies (less than ± 1.0 %) from 281 K to 308 K and the time constant of developed sensor is about 58 sec at 301 K. Even though the estimation errors are relatively high at low concentration, the developed sensor is competitive to the commercial product with a high accuracy and the stability.

SW Development for Easy Integration of Robot System Composed of Heterogeneous Control Platforms into ROS-based System (이종의 제어 플랫폼들로 구성된 로봇 시스템을 ROS 기반의 시스템으로 손쉽게 통합하기 위한 소프트웨어의 개발)

  • Kang, Hyeong Seok;Lee, Dong Won;Shin, Dong Hun
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.375-384
    • /
    • 2020
  • Today's robots consist of many hardware and software subsystems, depending on the functions needed for specific tasks. Integration of subsystems can require a great deal of effort, as both the communication method and protocol of the subsystem can vary. This paper proposes an expandable robotic system in which all subsystems are integrated under Robot Operation System (ROS) framework. To achieve this, the paper presents a software library, ROS_M, developed to implement the TCP/IP-based ROS communication protocol in different control environments such as MCU and RT kernel based embedded system. Then, all the subsystem including hardware can use ROS protocol consistently for communication, which makes adding new software or hardware subsystems to the robotic system easier. A latency measurement experiment reveals that the system built for loop control can be used in a soft real-time environment. Finally, an expandable mobile manipulator robot is introduced as an application of the proposed system. This robot consists of four subsystems that operate in different control environments.

Comparison of Gait Patterns on Pregnant's Kinematic Factors and Lower-Limb Joint Moments During Pregnant Period (임신 기간에 따른 임산부 보행의 운동학적 요인과 하지 관절모멘트 패턴 비료)

  • Hah, Chong-Ku;Jang, Young-Kwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.78-84
    • /
    • 2009
  • The purpose of this study was to compare gait patterns during pregnancy. Because of the changes in hormone levels and anatomical changes such as body mass, body-mass distribution, joint laxity, and musculotendinous strength that result from pregnancy, it was possible that there would be certain gait deviations associated with these changes. Three-dimensional gait analyses were performed from a self-selected pace, and six subjects(height : $163{\pm}5.3cm$, mass : $61.3{\pm}3.80kg$, $65.3{\pm}5.14kg$, $70.2{\pm}4.98kg$) participated in the three times(the early, middle and last years). 7 cameras(Proreflex MCU-240, Qualisys) and 2 force plates (Type 9286AA, Kistler) were used to acquire raw data. The parameters were calculated and analyzed with Visual-3D and Joint moments computed using inverse dynamics. In conclusion, pregnant women's gait patterns were changed during pregnancy period because pregnancy makes them physical changes. The main changes were joint moments and kinematic factors during pregnancy period. The pregnancy transformed normal gait pattern Into toe out position. Therefore, exercise programs to improve muscle activity were necessary where joint moments were small. The development of simulator should be studied for pregnant women's tailored shoes and accessories in future.

A Wrist Watch-type Cardiovascular Monitoring System using Concurrent ECG and APW Measurement

  • Lee, Kwonjoon;Song, Kiseok;Roh, Taehwan;Yoo, Hoi-jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.702-712
    • /
    • 2016
  • A wrist watch type wearable cardiovascular monitoring device is proposed for continuous and convenient monitoring of the patient's cardiovascular system. For comprehensive monitoring of the patient's cardiovascular system, the concurrent electrocardiogram (ECG) and arterial pulse wave (APW) sensor front-end are fabricated in $0.18{\mu}m$ CMOS technology. The ECG sensor frontend achieves 84.6-dB CMRR and $2.3-{\mu}Vrms$-input referred noise with $30-{\mu}W$ power consumption. The APW sensor front-end achieves $3.2-V/{\Omega}$ sensitivity with accurate bio-impedance measurement lesser than 1% error, consuming only $984-{\mu}W$. The ECG and APW sensor front-end is combined with power management unit, micro controller unit (MCU), display and Bluetooth transceiver so that concurrently measured ECG and APW can be transmitted into smartphone, showing patient's cardiovascular state in real time. In order to verify operation of the cardiovascular monitoring system, cardiovascular indicator is extracted from the healthy volunteer. As a result, 5.74 m/second-pulse wave velocity (PWV), 79.1 beats/minute-heart rate (HR) and positive slope of b-d peak-accelerated arterial pulse wave (AAPW) are achieved, showing the volunteer's healthy cardiovascular state.

Development of Steering Control System based on CAN for Autonomous Tractor System (자율 주행 트랙터 시스템의 성능 향상을 위한 CAN 기반의 조향제어시스템 개발)

  • Seo, Dong-Hyun;Seo, Il-Hwan;Chung, Sun-Ok;Kim, Ki-Dae
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.1
    • /
    • pp.123-130
    • /
    • 2010
  • A steering control system based on CAN(Controller Area Network) for autonomous tractor was developed to reduce duty of a central processing computer and to improve performance of steering control in terms of reduced control interval and error. The steering control system consisted of a SCU (Steering Control Unit), an EHPS system, and a potentiometer. The SCU consisted of an MCU (Micro Controller unit), an A/D converter, and a DC-DC converter, and a PID controller was used to control steering angle. The steering control system was communicated with the computer by CAN-bus. Each actuator and implement was connected to a multi-function board interfacing with the computer through a USB cable. Without CAN, control interval of the autonomous tractor was 1.5 seconds. When the CAN-based steering control system was combined with the autonomous tractor, however, control interval of the integrated system was reduced to those less than 0.05 seconds. When the autonomous tractor was operated with 1.5-s and 0.05-s control cycles at a 0.63-m/s travelling speed, the trajectories were close to straight lines for both of the control cycles. For a 1.34-m/s traveling speed, tractor trajectory was close to sine wave with a 1.5-s control cycle, but was straight line with a 0.05-s control cycle.

Design of Autobike Driver's Driving Information and e-call Functions Providing Software using Smart Helmet (스마트헬멧을 이용한 오토바이 운전자 주행정보 및 e-call 기능 제공 소프트웨어의 설계)

  • Cho, Byung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.173-179
    • /
    • 2017
  • Autobike is insufficient of car navigation informations and high of accident dangerousness comparing to car. So if a system providing autobike driver's driving information and e-call function is developed using smart helmet consisting of collision perception sensor, rear camera, bluetooth communication module, MCU and HUD, It is very useful and can decrease of person's damage and handle expeditious traffic accident during autobike accident. In this paper, when this, "Providing system of autobike driver's information and e-call function", software is developed, a proper analysis and design method for practical affairs try to be presented due to showing software development analysis method, architecture of hardware block-diagram, flowchart and UI design.

Residual Neuromuscular Sensing Platform Development using Sensor of Nerve Stimulation Response Measurement during Anesthesia (신경자극반응 측정 센서를 이용한 마취 시 잔여근이완 감지 플랫폼 구현)

  • Shin, Hyo-Seob;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1505-1510
    • /
    • 2010
  • Response to nerve stimulation platform for implementing measures to detect finger movement has been functioning as an important factor. The finger movement of the muscle response to nerve stimulation and sensing Actuator for the H/W development is needed. In addition, a low power embedded CPU based on the top was used. H/W configuration portion of the isolation power, constant current control, High impedance INA, amplifier parts, and the stimulus mode and the Micro-control the status of current, AD converter Low Data obtained through the processing system is implemented.

Reasonable Hardware Design Methods for 2-Wheeled Mobile Robots : Based on Segway Type Mobile Robots (2륜 이동로봇의 합리적인 하드웨어 설계 노하우 : 세그웨이를 중심으로)

  • Joh, Jung-Woo;Park, Gwi-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.109-111
    • /
    • 2009
  • In this paper, we discuss how to design 2-wheeled mobile robot hard wares as reasonable and practical as possible. A segway type mobile robot consists of 2 wheels only, placed in parallel rather than horizon. 2-wheeled mobile robots make you overcome high cost and time consuming maintenance procedures of the robot by reducing the number of robot hardwares. The most challenging thing in a 2-wheeled mobile robot that has many more valid virtues than the traditional mobile robots is to make it balance itself whenever it stands still or goes forward. But balancing itself is not an easy matter and there are many researches and experiments on this issue. When researchers test theories on 2-wheeled mobile robots to improve its self balancing performance, they should consider how to design hard wares of that mobile robot. No matter how great those new theories are, if a testbed for those theories is not suitable, performance output would be poor and meaningless. In this point of view, to design a proper 2-wheeled mobile robot as a testbed is a very important issue with development of new theories. So we define 4 guide lines to design segway type mobile robots reasonably; about motor, battery, and MCU selection and shock-proof design with robust motor setting.

  • PDF

A Monolithic Integration with A High Density Circular-Shape SOI Microsensor and CMOS Microcontroller IC (CMOS Microcontroller IC와 고밀도 원형모양SOI 마이크로센서의 단일집적)

  • Mike, Myung-Ok;Moon, Yang-Ho
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.1-10
    • /
    • 1997
  • It is well-known that rectangular bulk-Si sensors prepared by etch or epi etch-stop micromachining technology are already in practical use today, but the conventional bulk-Si sensor shows some drawbacks such as large chip size and limited applications as silicon sensor device is to be miniaturized. We consider a circular-shape SOI(Silicon-On-Insulator) micro-cavity technology to facilitate multiple sensors on very small chip, to make device easier to package than conventional sensor like pressure sensor and to provide very high over-pressure capability. This paper demonstrates the cross-functional results for stress analyses(targeting $5{\mu}m$ deflection and 100MPa stress as maximum at various applicable pressure ranges), for finding permissible diaphragm dimension by output sensitivity, and piezoresistive sensor theory from two-type SOI structures where the double SOI structure shows the most feasible deflection and small stress at various ambient pressures. Those results can be compared with the ones of circular-shape bulk-Si based sensor$^{[17]}. The SOI micro-cavity formed the sensors is promising to integrate with calibration, gain stage and controller unit plus high current/high voltage CMOS drivers onto monolithic chip.

  • PDF

An Efficient Hybrid LED Street Lighting Management System Design using Standalone Solar Photovoltaic (독립형 태양광 발전을 이용한 효율적인 하이브리드 LED 가로등 조명관리 시스템 설계)

  • Hong, Sung-Il;Lin, Chi-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.984-993
    • /
    • 2014
  • In this paper, we propose a design for an efficient hybrid LED street lighting management system using standalone solar photovoltaic. The proposed efficient hybrid LED street lighting management system was composed of hybrid power conditioning system, gateways, LED street lights and a monitoring server. The hybrid power conditioning system was designed to charge produced power by solar photovoltaic panels in day time, and supply power to the LED street lights in night time. If there is insufficient power, the system was designed to operate using firm power, because the system utilizes photovoltaic power. A system control algorithm allied to the lighting management system, and experimented by being configured to the functions that are able to perform real-time monitoring and remote control through the lighting management system even when absent. In the result of the efficiency analysis of the hybrid lighting management system proposed in this paper, we were able to increase the energy efficiency compared to existing lighting control systems by reducing power consumption and electricity costs.