• Title/Summary/Keyword: MCS Level

Search Result 87, Processing Time 0.022 seconds

Applicability of Practical Reliability Analysis to Develop Fragility Curves for Levee (제방의 취약도 곡선 작성을 위한 실용적 신뢰성 해석의 적용성)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.19-30
    • /
    • 2022
  • Developing a fragility curve for the levee requires calculating the probability of failure according to the water level for each failure mode. Since probabilistic analysis requires iterative analysis to account for variability in geotechnical parameters, the fragility curve development inevitably requires many iterative calculations. Therefore, approximate probabilistic analysis techniques are usually applied to reduce the amount of calculation in developing the levee fragility curve. However, their accuracy has not been determined clearly. This study calculated the failure probability of slope and piping failure mode for an actual levee through probabilistic methods, such as FOSM, PEM, and MCS. Then, the fragility curve of the levee according to the water level was developed. The results of the approximate methods: FOSM and PEM, were compared with those of MCS to evaluate the applicability to the fragility curve for slope and piping failure mode.

The Method of Determining Stress Levels Regarding the Electrical ALT through Optical Temperature Sensor

  • Ryu, Haeng-Soo;Han, Gyu-Hwan;Yoon, Nam-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.184-191
    • /
    • 2008
  • Electrical endurance is the critical characteristic of Magnetic contactors(MCs), which are widely used in such power equipment as elevators, cranes, and factory control rooms in order to close and open control circuits. Testing time, however, is not short in typical cases in which some method of reducing the testing period is required. This study shows the method of determining the stress level of electrical ALT(Accelerated Life Test) through optical temperature sensor and the relationship between 0.05 s and 0.1 s for on-time. The tool used for analyzing the test result is MINITAB. I will propose the method of determining the optimized stress level through optical temperature sensor, which will contribute to minimize the testing time and development period and also raise the product reliability.

Hybrid Multiple Classifier Systems (하이브리드 다중 분류기시스템)

  • Kim In-cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.2
    • /
    • pp.133-145
    • /
    • 2004
  • Combining multiple classifiers to obtain improved performance over the individual classifier has been a widely used technique. The task of constructing a multiple classifier system(MCS) contains two different issues : how to generate a diverse set of base-level classifiers and how to combine their predictions. In this paper, we review the characteristics of the existing multiple classifier systems: bagging, boosting, and stacking. And then we propose new MCSs: stacked bagging, stacked boosting, bagged stacking, and boasted stacking. These MCSs are a sort of hybrid MCSs that combine advantageous characteristics of the existing ones. In order to evaluate the performance of the proposed schemes, we conducted experiments with nine different real-world datasets from UCI KDD archive. The result of experiments showed the superiority of our hybrid MCSs, especially bagged stacking and boosted stacking, over the existing ones.

  • PDF

The Impact of Social Isolation on Health-related Quality of Life of Older Adults Living Alone (독거노인의 사회적 고립이 건강관련 삶의 질에 미치는 영향)

  • Kim, Ahrin
    • Journal of Digital Convergence
    • /
    • v.18 no.8
    • /
    • pp.343-351
    • /
    • 2020
  • The purpose of this study was to investigate social networks, loneliness, and sleep quality related to health-related quality of life in older adults living alone. Data were collected from 111 community-dwelling elderly. The data were analyzed using descriptive statistics, independent t-test, one-way ANOVA, Pearson's correlation coefficients, and multiple linear regressions with IBM SPSS 26.0 program. In multiple regression analysis, physical component summary (PCS) was predicted by the level of education (β=.20, p=.020), social networks (β=.31, p=.012), and sleep quality (β=-.23, p=.011). The model including these variables accounted for 25.7% of the variance in the PCS. Mental component summary (MCS) was predicted by loneliness (β=-.37, p=.004). Loneliness accounted for 31.7% of the variance in the MCS. In order to enhance the health-related quality of life of the older adults living alone, the intervention program to resolve social isolation should be provided for them.

Reliability Analysis of Temporary Structures Considering Uncertainty in Rotational Stiffness at Member Joints (부재 연결부 회전 강성의 불확실성을 고려한 가설 구조물의 신뢰성 해석)

  • Ryu, Seon-Ho;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.87-94
    • /
    • 2019
  • This study deals with the reliability analysis approach of the temporary structure that can consider the uncertainty in rotational stiffness at the joints of the members, for which the semi-rigid connections are modelled as rotational spring and its coefficient is treated as a random variable following uniform distribution. In addition, this study introduces a computational procedure of the effective length coefficient for more accurate buckling load according to connection conditions of the supporting members attached to the joint. From the results of this study, it can be seen that the failure probability of the joint-hinge model (Case 1) presented in the design standard is higher than that of the practical model (Case 5) considering the rotational stiffness at the joints. This implies that the design standard leads to a conservative design of the temporary structure. The results also confirmed that the failure probability of the vertical member, i.e., the most critical member, can be further reduced when the base connection is provided with a fixed end. The comparative results between FORM, SORM and MCS further demonstrated that FORM can have a high level of numerical efficiency while ensuring the accuracy of the solution, compared with SORM and MCS. Based on these results, the proposed approach can be used as an accurate and efficient reliability analysis method of the three dimensional temporary structure.

Reliability Analysis and Evaluation of Partial Safety Factors for Wave Run-up (처오름에 대한 신뢰성 해석 및 부분안전계수 산정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.355-362
    • /
    • 2008
  • A reliability model of Level II AFDA is proposed to analyze the wave run-up occurring by the interaction of incident waves and sloped coastal structures. The reliability model may be satisfactorily calibrated by Level III Monte-Carlo simulation. Additionally, the partial safety factors of random variables related to wave run-up can be straightforwardly evaluated by the inverse-reliability method that use influence coefficients and uncertainties of random variables, and target probability of failure. In particular, a design equation for wave run-up is derived in the same form as that of deterministic design method so that the reliability-based design method of Level I may be applied easily. Finally, it is confirmed that results redesigned by the reliability-based design method of Level I with partial safety factors suggested in this paper are satisfactorily compared with results of CEM(2006) as well as those of Level II AFDA.

Robust Optimal Design of a Decoupled Vibratory Microgyroscope Considering Fabrication Influence (공정영향을 고려한 비연성 진동형 마이크로 자이로스코프의 강건 최적 설계)

  • Jeong Hee-Moon;Ha Sung Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1065-1074
    • /
    • 2004
  • A robust optimal design considering fabrication influence has been performed for the decoupled vibratory microgyroscope fabricated by the bulk micromachining. For the analysis of the gyroscope, a design tool has been developed, by which user can perform the system level design considering electric signal process and the fabrication influence as well as mechanical characteristics. An initial design of the gyroscope is performed satisfying the performances of scale factor (or sensitivity) and phase delay, which depend on the frequency difference between driving and sensing resonant frequencies. The objective functions are formulated in order to reduce the variances of the frequency difference and the frequency in itself by fabrication error. To certify the results, the standard deviations are calculated through the Monte Caries Simulation (MCS) and compared initial deviation that is measured fabricated gyroscope chip.

A Multi-hop OFDM Frame Structure for Short-Range Underwater Acoustic Communication Networks

  • Yu, HaiFeng;Kim, Woon;Chang, KyungHi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.809-811
    • /
    • 2015
  • In this paper, for the purpose of providing high data rate services, the multi-hop frame structure is designed for the underwater acoustic (UWA) short-range system which is proposed as a part of ocean surveillance and tracking network (OSTN). Under the measured underwater channel environment, the link-level system performance are also evaluated. Simulation results show not only the packet error rate (PER) comparisons, but the optimal modulation and coding scheme (MCS) levels for the orthogonal frequency division multiplexing (OFDM) based short-range UWA communications network.

OPTIMAL RELIABILITY DESIGN FOR THIN-WALLED BEAM OF VEHICLE STRUCTURE CONSIDERING VIBRATION

  • Lee, S.B.;Baik, S.;Yim, H.J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.135-140
    • /
    • 2003
  • In the deterministic optimization of a structural system, objective function, design constraints and design variables, are treated in a nonstatistical fashion. However, such deterministic engineering optimization tends to promote the structural system with lest reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. Therefore, a balance must be developed between the satisfactions of the design requirements and the objectives of reducing manufacturing cost. This paper proposes the reliability-based design optimization (RBDO) technique, which enables the optimum design that considers confidence level for the vibration characteristics of structural system. Response surface method (RSM) is utilized to approximate the performance functions describing the system characteristics in the RBDO procedure. The proposed optimization technique is applied to the pillar section design considering natural frequencies of a vehicle structure.

Vital Area Identification of Nuclear Facilities by using PSA (PSA기법을 이용한 원자력시설의 핵심구역 파악)

  • Lee, Yoon-Hwan;Jung, Woo-Sik;Hwang, Mee-Jeong;Yang, Joon-Eon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.63-68
    • /
    • 2009
  • The urgent VAI method development is required since "The Act of Physical Protection and Radiological Emergency that is established in 2003" requires an evaluation of physical threats in nuclear facilities and an establishment of physical protection in Korea. The VAI methodology is developed to (1) make a sabotage model by reusing existing fire/flooding/pipe break PSA models, (2) calculate MCSs and TEPSs, (3) select the most cost-effective TEPS among many TEPSs, (4) determine the compartments in a selected TEPS as vital areas, and (5) provide protection measures to the vital areas. The developed VAI methodology contains four steps, (1) collecting the internal level 1 PSA model and information, (2) developing the fire/flood/pipe rupture model based on level 1 PSA model, (3) integrating the fire/flood/pipe rupture model into the sabotage model by JSTAR, and (4) calculating MCSs and TEPS. The VAT process is performed through the VIPEX that was developed in KAERI. This methodology serves as a guide to develop a sabotage model by using existing internal and external PSA models. When this methodology is used to identify the vital areas, it provides the most cost-effective method to save the VAI and physical protection costs.