DOI QR코드

DOI QR Code

Applicability of Practical Reliability Analysis to Develop Fragility Curves for Levee

제방의 취약도 곡선 작성을 위한 실용적 신뢰성 해석의 적용성

  • Cho, Sung-Eun (School of Civil and Environmental Engrg. & Construction Engrg. Research Institute, Hankyong National Univ.)
  • 조성은 (한경대학교 건설환경공학부)
  • Received : 2022.08.16
  • Accepted : 2022.10.24
  • Published : 2022.11.30

Abstract

Developing a fragility curve for the levee requires calculating the probability of failure according to the water level for each failure mode. Since probabilistic analysis requires iterative analysis to account for variability in geotechnical parameters, the fragility curve development inevitably requires many iterative calculations. Therefore, approximate probabilistic analysis techniques are usually applied to reduce the amount of calculation in developing the levee fragility curve. However, their accuracy has not been determined clearly. This study calculated the failure probability of slope and piping failure mode for an actual levee through probabilistic methods, such as FOSM, PEM, and MCS. Then, the fragility curve of the levee according to the water level was developed. The results of the approximate methods: FOSM and PEM, were compared with those of MCS to evaluate the applicability to the fragility curve for slope and piping failure mode.

하천제방의 취약도 곡선을 구하기 위해서는 수위에 따른 파괴확률을 각 파괴모드 별로 구해야 한다. 확률론적 해석은 지반공학적 확률변수의 변동성을 고려하기 위하여 반복적인 해석을 필요로 하므로 취약도 곡선을 구하는 작업은 많은 반복 계산을 필연적으로 수반한다. 실제 제방의 취약도 곡선 작성에서는 계산량을 줄이기 위하여 단순화된 확률론적 해석기법을 적용하고 있으나 그 정확성에 대한 명확한 평가는 없는 형편이다. 본 연구에서는 실제 하천제방을 대상으로 확률론적인 방법에 의해 사면안정과 파이핑에 대한 파괴확률을 계산하여 제방의 안전도를 평가하고 수위에 따른 제방의 취약도 곡선을 구하였다. 이때 간략법인 FOSM과 PEM의 결과를 MCS의 결과와 비교하여 사면안정과 파이핑 파괴모드의 취약도 곡선 작성에 대한 적용성을 평가하였다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2022R1F1A1062669).

References

  1. Ahn, K. H. (2009), Combined Reliability Model for Levee Embankment Integrated Stochastic Characterization of Rainfall Variation, Doctoral Thesis, Kyungpook National University (in Korean).
  2. Baecher, G. B. and Christian, J. T. (2003), Reliability and Statistics in Geotechnical Engineering, John Wiley & Sons.
  3. Cho, S. E. (2011), "Probabilistic Seepage Analysis by the Finite Element Method Considering Spatial Variability of Soil Permeability", Journal of the Korean Geotechnical Society, Vol.27, No.10, pp. 93-104 (in Korean). https://doi.org/10.7843/KGS.2011.27.10.093
  4. Cho, S. E. (2012), "Probabilistic Analysis of Seepage that Considers the Spatial Variability of Permeability for an Embankment on Soil Foundation", Engineering Geology, Vol.133-134, pp.30-39. https://doi.org/10.1016/j.enggeo.2012.02.013
  5. Cho, S. E. (2019), "Probabilistic Failure-Time Analysis of Soil Slope under Rainfall Infiltration by Numerical Analysis", Journal of the Korean Geotechnical Society, Vol.35, No.12, pp.45-58 (in Korean).
  6. Cho, S. E. (2021), "Probabilistic Assessment of Seepage Stability of Soil Foundation under Water Retaining Structures by Fragility Curves", Journal of the Korean Geotechnical Society, Vol.37, No. 10, pp.41-54 (in Korean). https://doi.org/10.7843/KGS.2021.37.10.41
  7. Han, G. Y., Lee, J. S., and Kim, S. H. (1997), "Risk Model for the Safety Evaluation of Dam and Levee : I. Theory and Model", J. Korea Water Resour. Assoc., Vol.30, No.6, pp.679-690 (in Korean).
  8. Kennedy, R. P., Cornell, C. A., Campbell, R. D., Kaplan, S., and Perla, H. F. (1980), "Probabilistic Seismic Safety Study of an Existing Nuclear Power Plant", Nuclear Engineering and Design, Vol.59, No.2, pp.315-338. https://doi.org/10.1016/0029-5493(80)90203-4
  9. Kwater (2010), Geotechnical Investigation Report for Section 23 of Nakdong River Restoration Project, Korea Water Resources Corporation (in Korean).
  10. Lee, C. W. (2017), A Study on the Stability Evaluation of the Levee Considering Geotechnical Factors, Master Thesis, Hankyong National University (in Korean).
  11. Moellmann, A., Vermeer, P. A., and Huber, M. (2011), "A Probabilistic Finite Element Analysis of Embankment Stability under Transient Seepage Conditions", Georisk, Vol.5, No.2, pp.110-119. https://doi.org/10.1080/17499511003630520
  12. N am, M. J., Lee, J. Y., Lee, C. W., and Kim, K. Y. (2017), "Estimating the Compound Risk Integrated Hydrological/Hydraulic/ Geotechnical Uncertainty of Levee Systems", J. Korea Water Resour. Assoc., Vol. 50, No.4, pp.277-288 (in Korean).
  13. Phoon, K. K. and Kulhawy, F. H. (2008), Reliability-Based Design in Geotechnical Engineering: Computations and Applications. Taylor & Francis.
  14. Rice, J. D. and Polanco, L. (2012), "Reliability-Based Underseepage Analysis in Levees Using a Response Surface-Monte Carlo Simulation Method", Journal of Geotechnical and Geoenvironmental Engineering, Vol.138, No.7, pp.821-830. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000650
  15. RocScience (2016), SLIDE V6.0, Rocscience Inc, Toronto.
  16. Rosenblueth, E. (1975), "Point Estimates for Probability Moments", Proceedings of the National Academy of Sciences, Vol.72, No.10, pp.3812-3814. https://doi.org/10.1073/pnas.72.10.3812
  17. Rossi, N., Bacic, M., Kovacevic, M. S., and Libric, L. (2021), "Development of Fragility Curves for Piping and Slope Stability of River Levees", Water, Vol.13, No.5, 738, https://doi.org/10.3390/ w13050738
  18. Simm, J. and Tarrant, O. (2018), "Development of Fragility Curves to Describe the Performance of UK Levee Systems", Proceedings of the Twenty-Sixth International Congress on Large Dams, Vienna, Austria.
  19. Tsompanakis, Y., Lagaros, N. D., Psarropoulos, P. N., and Georgopoulos, E.C. (2010), "Probabilistic Seismic Slope Stability Assessment of Geostructures", Structure and Infrastructure Engineering, Vol.6, No.1-2, pp.179-191. https://doi.org/10.1080/15732470802664001
  20. USACE (1996), Risk-Based Analysis for Flood Damage Reduction Studies, US Army Corps of Engineers, Engineer Manual 1110-2-1619.
  21. USACE (1999), Risk-Based Analysis in Geotechnical Engineering for Support of Planning Studies, Engineer Technical Letter 1110-2-556, U.S. Army Corps of Engineers.
  22. Vorogushyn, S., Merz, B., and Apel, H. (2009), "Development of Dike Fragility Curves for Piping and Micro-Instability Breach Mechanisms", Natural Hazards and Earth System Sciences, Vol.9, pp.1383-1401. https://doi.org/10.5194/nhess-9-1383-2009
  23. Wang, J. P. and Huang, D. (2012), "RosenPoint: A Microsoft Excel-Based Program for the Rosenblueth Point Estimate Method and an Application in Slope Stability Analysis", Computers & Geosciences, Vol.48, pp.239-243 https://doi.org/10.1016/j.cageo.2012.01.009