• Title/Summary/Keyword: MCM-C module

Search Result 18, Processing Time 0.02 seconds

Fabrication of Switch Module for ATM Exchange System using MCM Technology (멀티칩 기술을 이용한 ATM 교환기용 Switch 모듈 제작)

  • Ju, Cheol-Won;Kim, Chang-Hun;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.433-437
    • /
    • 2000
  • We fabricated switch module of ATM(Asynchronous Transfer Mode) exchange system with MCM-C(MultiChip Module Co-fired) technology and measured its electrical characteristics. Green tape was used as substrate and Au/Ag paste was used to form the interconnect layers. The via holes were made by drill and filled with metal paste usign screen method. After manufacturing the substrate, chips and passive components were assembled on the substrate. In electrical test, the module showed the output signal of 46.9MHz synchronized with input signal. In the view of substrate size reduction, the area of MCM switch module was 35% of conventional hybrid switch module.

  • PDF

The analysis of the behavior of embedded resistor in MCM-C modules (MCM-C 모듈내에서의 내층형 저항의 거동 해석)

  • Yoo, Joshua;Lee, W.S.;Park, J.C.;Kim, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.764-767
    • /
    • 2003
  • Nowadays, the study on the ceramic components and modules using LTCC is being peformed and on the passives included in modules is being done also. Especillay frequency dependent components like capacitor and inductor are studied by many groups, but the behavior of embedded resistor in MCM-C module are not studied vigorously. The characteristics of embedded resistor in modules is different from that of resistor alone. In our research, behavior of embedded resistor is examined in the variation of position and geometrical parameters.

  • PDF

The analysis of the behavior of embedded resistor in MCM-C modules (MCM-C 모듈내에서의 내층형 저항의 거동 해석)

  • Yoo, Jo-Shua;Lee, W.S.;Park, J.C.;Kim, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.599-602
    • /
    • 2004
  • Nowadays, the study on the ceramic components and modules using LTCC is being peformed and on the passives included in modules is being done also. Especillay frequency dependent components like capacitor and inductor are studied by many groups, but the behavior of embedded resistor in MCM-C module are not studied vigorously. The characteristics of embedded resistor in modules is different from that of resistor alone. In our research, behavior of embedded resistor is examined in the variation of position and geometrical parameters.

  • PDF

Fabrication of LTCC Microwave Dielectric Tape for RF MCM-C (RF MCM-C 제작을 위한 저온소결용 마이크로파 유전체 Tape 제조)

  • 이경호;최병훈
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.11a
    • /
    • pp.81-85
    • /
    • 2000
  • 마이크로파대역에서 우수한 유전적 특성을 가지며 소결이 90$0^{\circ}C$ 이하에서 가능하여 Ag와 동시 소결이 가능한 유전체 조성을 개발하여 RF MCM-C(Multi-chip Module on Ceramic) 제조를 위한 유전체 테잎 제조에 대한 기초적인 실험과 Ag 전극과 동시소성에 대한 반응성 실험을 하였다. 본 실험에 앞서 개발된 유전체 조성의 마이크로대역에서의 유전특성은 유전율 24, 품질계수 30,000 이상, 공진주파수 온도계수 37 ppm/$^{\circ}C$ 이었고 소결온도는 85$0^{\circ}C$이었다. 이 유전체를 이용결함 없는 테잎 제조를 위한 유기용매의 선택, 바인더 및 가소제의 량 및 비에 따른 테잎의 소결 전 .후의 상태를 비교.분석하여 최적의 조성비를 결정하였다. 테잎과 은전극과의 반응성 실험결과 은과 유전체의 상호확산은 거의 이루어지지 않음을 확인하였다.

  • PDF

Fabrication and Characterization of Low Noise Amplifier using MCM-C Technology (MCM-C 기술을 이용한 저잡음 증폭기의 제작 및 특성평가)

  • Cho, H.M.;Lim, W.;Lee, J.Y.;Kang, N.K.;Park, J.C.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.11a
    • /
    • pp.61-64
    • /
    • 2000
  • We fabricated and characterized Low Noise Amplifier (LNA) using MCM-C (Multi-Chip-Module-Cofired) technology for 2.14 GHz IMT-2000 mobile terminal application. First, We designed LNA circuits and simulated it's high frequency characteristics using circuits simulator. For the simulation, we adopted high frequency libraries of all the devices used in LNA samples. By the simulation, Gain was 17 dB and Noise Figure was 1.4 dB. We used multilayer process of LTCC (Low Temperature Co-fired Ceramics) substrate and conductor, resistor pattern for the MCM-C LNA fabrication. We made 2 buried inductors, 2 buried capacitors and 3 buried resistors. The number of the total layers was 6. On the top layer, we patterned microstrip line and pads for the SMT device. We measured the high frequency characteristics, and the results were 14.7 dB Gain and 1.5 dB Noise Figure.

  • PDF

Fabrication and Characterization of Buried Resistor for RF MCM-C (고주파 MCM-C용 내부저항의 제작 및 특성 평가)

  • Cho, H. M.;Lee, W. S.;Lim, W.;Yoo, C. S.;Kang, N. K.;Park, J. C.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • Co-fired resistors for high frequency MCM-C (Multi Chip Module-Cofired) were fabricated and measured their RF properties from DC to 6 GHz. LTCC (Low Temperature Co-fired Ceramics) substrates with 8 layers were used as the substrates. Resisters and electrodes were printed on the 7th layer and connected to the top layer by via holes. Deviation from DC resistance of the resistors was resulted from the resister pastes, resistor size, and via length. From the experimental results, the suitable equivalent circuit model was adopted with resistor, transmission line, capacitor, and inductor. The characteristic impedance $Z_{o}$ of the transmission line from the equivalent circuit can explain the RF behavior of the buried resistor according to the structural variation.

  • PDF

LTCC기술을 활용한 VCO모듈

  • 이영신;유찬세;이우성;강남기
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.12-24
    • /
    • 2001
  • The key advantage of LTCC(low temperature co-fired ceramics) technology is the ability to integrate passive components such as resistors, capacitors, and inductors. More compact circuits with an increased scale of integration are needed with the development for advanced telecommunication system such as IMT-2000. LTCC technology can be obtained by removing these elements from the substrate surface to inside of ceramic body. And it can miniaturize the wireless phone through integration of planar patch antenna, duplexer, band pass filter, bias line, circuit of impedance matching and RF choke etc. Futhermore, with the multilayer chip process and its outstanding electrical material characteristics, LTCC is predestined for highly-integrated, cost effective wide band applications. This paper focuses on the general description of LTCC MCM technologies and the fabrication of the multilayer VCO module.

  • PDF

Via Formation in Dielectric Layers Made of Photosensitive BCB (감광성 BCB를 이용한 절연막층에서의 비아형성)

  • 주철원;임성훈;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.5
    • /
    • pp.351-355
    • /
    • 2001
  • Via for achieving reliable fabrication of MCM(Multichip Module) substrate was formed on photosensitive BCB layer. The MCM substrate consists of photosensitive BCB(Benzocyclobutene) interlayer dielectric and copper conductors. In order to form the vias in the photosensitive BCB layer, the process of forming the BCB layer and its via forming plasma etch using C$_2$F$\_$6//O$_2$ gas were evaluated. The thickness of the BCB layer after hard bake was shrunk down to 40% of the original. The resolution of vias formed on the BCB was 15㎛ and the slope after develop was 85 degree. AES analysis was done on two vias, one is etched in C$_2$F$\_$6/O$_2$ gas and the other isnot etched. On the via etched in C$_2$F$\_$6//O$_2$, native C was detected and the amount of native C was reduced after Ar sputter. On the via not etched in C$_2$F$\_$6//O$_2$, organic C was detected. As a result of AES, BCB residue was not removed by Ar sputter, so plasma etch is necessary for achieving reliable vias.

  • PDF

Generation of Testability on High Density /Speed ATM MCM and Its Library Build-up using BCB Thin Film Substrate (고속/고집적 ATM Switching MCM 구현을 위한 설계 Library 구축 밀 시험성 확보)

  • 김승곤;지성근;우준환;임성완
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.2
    • /
    • pp.37-43
    • /
    • 1999
  • Modules of the system that requires large capacity and high-speed information processing are implemented in the form of MCM that allows high-speed data processing, high density circuit integration and widely applied to such fields as ATM, GPS and PCS. Hence we developed the ATM switching module that is consisted of three chips and 2.48 Gbps data throughput, in the form of 10 multi-layer by Cu/Photo-BCB and 491pin PBGA which size is $48 \times 48 \textrm {mm}^2$. hnologies required for the development of the MCM includes extracting parameters for designing the substrate/package through the interconnect characterization to implement the high-speed characteristics, thermal management at the high-density MCM, and the generation of the testability that is one of the most difficult issues for developing the MCM. For the development of the ATM Switching MCM, we extracted signaling delay, via characteristics and crosstalk parameters through the interconnect characterization on the MCM-D. For the thermal management of 15.6 Watt under the high-density structure, we carried out the thermal analysis. formed 1.108 thermal vias through the substrate, and performed heat-proofing processing for the entire package so that it can keep the temperature less than $85^{\circ}C$. Lastly, in order to ensure the testability, we verified the substrate through fine pitch probing and applied the Boundary Scan Test (BST) for verifying the complex packaging/assembling processes, through which we developed an efficient and cost-effective product.

  • PDF