• Title/Summary/Keyword: MCF-7 Cell

검색결과 736건 처리시간 0.026초

Effects of Metformin on Cell Kinetic Parameters of MCF-7 Breast Cancer Cells in Vitro

  • Topcul, Mehmet;Cetin, Idil
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2351-2354
    • /
    • 2015
  • In this study, the antiproliferative effects of the metformin was evaluated on MCF-7 Cells (human breast adenocarcinoma cell line). For this purpose cell kinetic parameters including cell proliferation assay, mitotic index and labelling index analysis were used. $30{\mu}M$, $65{\mu}M$ and $130{\mu}M$ Metformin doses were applied to cells for 24, 48 and 72 hours. The results showed that there was a significant decrease in cell proliferation, mitotic index and labelling index for all experimental groups (p<0.05) for all applications.

ALL TRANS RETINOIC ACID AND 9-cis RETINOIC ACID INHIBIT CELL PROLIFERATION ON HUMAN BREAST CANCER CELL UNE MCF-7

  • Yoon, Hyun-Jung;Gu Kong;Sheen, Yhun-Yhong
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Current Trends in Toxicological Sciences
    • /
    • pp.91-91
    • /
    • 2002
  • We have examine the effect of all trans retinoic acid and 9-cis-retinoic acid on human breast cancer cell proliferation using SRB assay and cell cycle analysis. 1)In MCF-7 cells, in the presence of phenol red, either all trans retinoic acid or 9-cis-retinoic acid treatment showed the inhibition of the cell proliferation over control cells and also inhibit the estrogen stimulated cell proliferation when it was given together with estrogen.(omitted)

  • PDF

유선 특정의 유전자 발현을 위한 세포 배양 모델에 대한 연구 (A Study on In Vitro Model for Mammary-Specific Gene Expression)

  • 염행철
    • 한국가축번식학회지
    • /
    • 제21권1호
    • /
    • pp.1-7
    • /
    • 1997
  • 형질 전환동물의 유선을 이용한 단백질의 생산이 보편화되고 있지만 원하는 단백질이 만들어지기 까지 많은 시간과 노력이 필요하며 기술적인 어려움이 항시 따른다. 그래서 보다 쉽게 재조합된 유전자의 발현 정도를 시험하는 in vitro에서의 시험방법의 개발은 중요한 의미가 있다고 하겠다. 따라서 본 연구에서는 인간의 유방암을 가진 환자의 유선에서 유래된 MCF7 cell line을 이용하여 유선 특징의 유전자 발현을 위한 세포 배양 모델을 개발하고자 하였다. 우선 소의 카제인의 cDNA를 MMTV-LTR의 통제하에 clone하였으며, 이것을 CaPO4의 침전법으로 MCF7 cell에 transfection 시킨 다음, HAT 배양액으로 선발하였으며, dexamethasone으로 유도시키고, 발현되는 정도를 면역 항체를 이용하여 분석하였다. 선발된 세포는 dexamethasone에 의하여 MMTV promoter가 유도되는 것을 확인할 수 있었다. 따라서 MCF7 cell과 같이 다양한 steroid receptor를 가지고 있는 세포는 유선 특정의 유전자 발현을 위한 세포 배양 모델에 유용하게 사용이 될 수 있을 것이다.

  • PDF

유근피(楡根皮) 추출물의 유방암 세포주 MCF-7 생장 억제 효과 (Anti-proliferative Effect of Ulmi Pumilae Cortex Extracts on MCF-7 cells)

  • 조성희;조수인;나원민;양승정
    • 대한한방부인과학회지
    • /
    • 제20권3호
    • /
    • pp.35-44
    • /
    • 2007
  • Purpose: This study was conducted to investigate the anti-proliferative effects of Ulmi Pumilae Cortex Extracts(UPCE) on MCF-7(human, breast, adenocaecinoma) and NIH3T3 (human, murine, fibroblast). Methods: MCF-7 cells and NIH3T3 cells were cultured and seeded in cell culture plates, respectively. UPC was extracted with hot water and then further fractionated it into five types: hexane, chloroform, ethyl acetate, butanol, and water soluable fractions. These five different fractions from UPCE were tested for their anti-proliferative effects on MCF-7 cells and NIH3T3 cells by MMT assay. Results: Among the five solvent-fractions of UPCE, n-hexane fraction and ethyl acetate fraction showed a strong anti-proliferative effects on MCF-7 cells but they displayed significant cytotoxicity on NIH3T3 cells, too. On the other hand, chloroform fraction showed a marked anti-proliferative effects on MCF-7 cells and low cytotoxicity on NIH3T3 cells. Conclusion: Chloloform fraction from UPCE showed selective anti-cancer activities on human breast cancer cell MCF-7 relatively to the other fractions.

  • PDF

Phytochemicals from Goniothalamus griffithii Induce Human Cancer Cell Apoptosis

  • Banjerdpongchai, Ratana;Khaw-on, Patompong;Pompimon, Wialrt
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권7호
    • /
    • pp.3281-3287
    • /
    • 2016
  • Bioactive compounds extracted from leaves and twigs of Goniothalamus griffithii include pinocembrin (PCN) and goniothalamin (GTN). The objectives of this study were to investigate the cytotoxic activities of PCN and GTN and their influence on molecular signaling for cell death in several human cancer cell lines compared to normal murine fibroblast NIH3T3 cells. GTN exhibited the most potent cytotoxicity against MCF-7 > HeLa > HepG2 > NIH3T3 cells with $IC_{50}$ values of 7.33, 14.8, 37.1 and $65.4{\mu}M$, respectively, whereas PCN was cytotoxic only to HepG2 cells with $IC_{50}$ values of ${\sim}80{\mu}M$. Apoptotic cell death was confirmed by staining the cells with annexin V-FITC and propidium iodide (PI) employing flow cytometry. Apoptosis was shown by externalization of phosphatidylserine in goniothalamin-treated MCF-7 cells in a dose response manner. Positive PI-stained cells with the typical morphology of apoptotic cells were increased dose-dependently. Furthermore, reduction of mitochondrial transmembrane potential was found in goniothalamin-treated MCF-7, HepG2 and HeLa cells. GTN treatment in MCF-7 increased caspase-3, -8 and -9 activities while GTN-induced HeLa cells showed an increase of both caspase-3 and -9 activities. But an increased caspase-8 activity was demonstrated in GTN- and PCN-treated MCF-7 and HepG2 cells, respectively. Taken together, GTN- and PCN-induced human cancer cell apoptosis was through different molecular mechanisms or signaling pathways, which might be due to different machineries in different types of cancer cells, as evidenced by the compound-modulated caspase activities in both intrinsic and/or extrinsic pathways.

Ellagic Acid Exerts Anti-proliferation Effects via Modulation of Tgf-Β/Smad3 Signaling in MCF-7 Breast Cancer Cells

  • Zhang, Tao;Chen, Hong-Sheng;Wang, Li-Feng;Bai, Ming-Han;Wang, Yi-Chong;Jiang, Xiao-Feng;Liu, Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권1호
    • /
    • pp.273-276
    • /
    • 2014
  • Ellagic acid has been shown to inhibit tumor cell growth. However, the underlying molecular mechanisms remain elusive. In this study, our aim was to investigate whether ellagic acid inhibits the proliferation of MCF-7 human breast cancer cells via regulation of the TGF-${\beta}$/Smad3 signaling pathway. MCF-7 breast cancer cells were transfected with pEGFP-C3 or pEGFP-C3/Smad3 plasmids, and treated with ellagic acid alone or in combination with SIS3, a specific inhibitor of Smad3 phosphorylation. Cell proliferation was assessed by MTT assay and the cell cycle was detected by flow cytometry. Moreover, gene expression was detected by RT-PCR, real-time PCR and Western blot analysis. The MTT assay showed that SIS3 attenuated the inhibitory activity of ellagic acid on the proliferation of MCF-7 cells. Flow cytometry revealed that ellagic acid induced G0/G1 cell cycle arrest which was mitigated by SIS3. Moreover, SIS3 reversed the effects of ellagic acid on the expression of downstream targets of the TGF-${\beta}$/Smad3 pathway. In conclusion, ellagic acid leads to decreased phosphorylation of RB proteins mainly through modulation of the TGF-${\beta}$/Smad3 pathway, and thereby inhibits the proliferation of MCF-7 breast cancer cells.

A Bacterial Metabolite, Compound K, Induces Programmed Necrosis in MCF-7 Cells via GSK3β

  • Kwak, Chae Won;Son, Young Min;Gu, Min Jeong;Kim, Girak;Lee, In Kyu;Kye, Yoon Chul;Kim, Han Wool;Song, Ki-Duk;Chu, Hyuk;Park, Byung-Chul;Lee, Hak-Kyo;Yang, Deok-Chun;Sprent, Jonathan;Yun, Cheol-Heui
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1170-1176
    • /
    • 2015
  • Ginsenosides, the major active component of ginseng, are traditionally used to treat various diseases, including cancer, inflammation, and obesity. Among these, compound K (CK), an intestinal bacterial metabolite of the ginsenosides Rb1, Rb2, and Rc from Bacteroides JY-6, is reported to inhibit cancer cell growth by inducing cell-cycle arrest or cell death, including apoptosis and necrosis. However, the precise effect of CK on breast cancer cells remains unclear. MCF-7 cells were treated with CK ($0-70{\mu}M$) for 24 or 48 h. Cell proliferation and death were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. Changes in downstream signaling molecules involved in cell death, including glycogen synthase kinase $3\beta$ ($GSK3\beta$), $GSK3\beta$, $\beta$-catenin, and cyclin D1, were analyzed by western blot assay. To block $GSK3\beta$ signaling, MCF-7 cells were pretreated with $GSK3\beta$ inhibitors 1 h prior to CK treatment. Cell death and the expression of $\beta$-catenin and cyclin D1 were then examined. CK dose- and time-dependently inhibited MCF-7 cell proliferation. Interestingly, CK induced programmed necrosis, but not apoptosis, via the $GSK3\beta$ signaling pathway in MCF-7 cells. CK inhibited $GSK3\beta$ phosphorylation, thereby suppressing the expression of $\beta$-catenin and cyclin D1. Our results suggest that CK induces programmed necrosis in MCF-7 breast cancer cells via the $GSK3\beta$ signaling pathway.

Roles of the Bcl-2/Bax Ratio, Caspase-8 and 9 in Resistance of Breast Cancer Cells to Paclitaxel

  • Sharifi, Simin;Barar, Jaleh;Hejazi, Mohammad Saeid;Samadi, Nasser
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권20호
    • /
    • pp.8617-8622
    • /
    • 2014
  • The goal of this study was to establish paclitaxel resistant MCF-7 cells, as in vitro model, to identify the molecular mechanisms leading to acquired chemoresistance in breast cancer cells. Resistant cells were developed by stepwise increasing exposure to paclitaxel. Gene expression levels of Bax and Bcl-2 along with protein levels of caspase-8 and caspase-9 were evaluated in two resistant cell lines (MCF-7/Pac64 and MCF-7/Pac5 nM). Morphological modifications in paclitaxel resistance cells were examined by light microscopy and fluorescence activated cell sorting (FACS). As an important indicator of resistance to chemotheraputic agents, the Bcl-2/Bax ratio showed a significant increase in both MCF-7/Pac5nM and MCF-7/Pac 64nM cells (p<0.001), while caspase-9 levels were decreased (p<0.001) and caspase-8 was increased (p<0.001). FACS analysis demonstrated that MCF-7/Pac64 cells were smaller than MCF-7 cells with no difference in their granularity. Our results support the idea that paclitaxel induces apoptosis in a mitochondrial-dependent manner. Identifying breast cancer patients with a higher Bcl-2/Bax ratio and caspase 9 level and then inhibiting the activity of these proteins may improve the efficacy of chemotheraputic agents.