• Title/Summary/Keyword: MB-OFDM

Search Result 88, Processing Time 0.025 seconds

MIMO MB-OFDM System (MIMO MB-OFDM 시스템)

  • Heo Joo;Chang Kyung Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10A
    • /
    • pp.1177-1188
    • /
    • 2004
  • This paper describes and analyzes the performance of MB-OFDM UWB system that is suggested as one of standards in IEEE 802.15 TG3a for UWB application. UMBchannel model that has been contributed in IEEE 802.15 SG3a is a wideband channel model of 6Ghz bandwidth, so we modify it to have 3 subband channels that are obtained by filtering conventional U Channel, considering center frequency hopping and system bandwidth. From simulations, we compare performances of MB-OFDM system in AWGN and WB channel and verify the frequency and time domain diversity gains from time End frequency spreading technique. We also compare and analyze the performance of proposed SFBC MB-OFDM with that of conventional MB-OFDM system. Simulation results show SFBC MB-OFDM system outperforms conventional MB-OFDM system about 1.5dB of Eb/No at target BER of 10$^{-m4}$./.

Performance Analysis of SFBC MB-OFDM UWB System (SFBC를 적용한 MB-OFDM UWB 시스템 성능 분석)

  • Heo, Joo;Chang, Kyung-Hi
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.67-70
    • /
    • 2004
  • This paper describes and analyzes the performance of MB-OFDM (Multi-Band OFDM) technology that is suggested as one of standards in IEEE 802.15 TG3a for uwb application. Also the performance of newly proposed SFBC MB-OFDM scheme is compared with that of conventional MB-OFDM system in this paper. Simulation results show that SFBC MB-OFDM system outperforms conventional MB-OFDM system about 1.5dB Eb/No at target BER of $10^{-4}$.

  • PDF

Cognitive Radio Using ITMA for MB-OFDM UWB System of Korea (무선 인지 기술(Cognitive Radio using ITMA)을 이용한 국내 환경에 적합한 MB-OFDM UWB 시스템)

  • Kim, Tae-Hun;Kim, Dong-Hee;Jang, Hong-Mo;Nam, Sang-Kyun;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1096-1105
    • /
    • 2007
  • In this paper, we propose a solution on interference problem of MB-OFDM UWB system using cognitive radio. We use interference temperature model of cognitive radio that has proposed by FCC for estimating interference signal. Calculating channel capacity of MB-OFDM UWB system with interference temperature, we suggest how to solve interference problem. We have used genetic algorithm in cognitive engine's calculation process. The proposed MB-OFDM UWB System with cognitive radio shows very efficient in solving interference problem.

An analysis of link margin for MB-OFDM UWB system in multi-path channel (다중 경로 채널에서의 MB-OFDM UWB 시스템 링크 마진 분석)

  • Shin, Cheol-Ho;Choi, Sang-Sung;Pack, Jeong-Ki
    • The KIPS Transactions:PartC
    • /
    • v.13C no.6 s.109
    • /
    • pp.677-684
    • /
    • 2006
  • This paper investigates the link margin of MB-OFDM UWB system quantitatively. Various simulations are performed considering the implementation loss by imperfect synchronization unit and the effect of multi-path fading channels. MB-OFDM UWB system uses ZP(Zero Padding) instead of CP(Cyclic Prefix) and supports two transmission modes; one is TFI(Time Frequency Interleaving) mode that transmits OFDM symbols using different carrier frequency from symbol to symbol according to Time Frequency(TF) codes, the other is FFI(Fixed Frequency Interleaving) mode that transmits OFDM symbols using a specific carrier frequency. The advantage of if and TFI is to be able to increase the transmitting power effectively compared to the existed OFDM systems that transmit the signal continuously at the same average transmitting power. From the analysis results of Ink margin, to guarantee the service range of 4m in 200Mbps mode, TFI mode must necessarily be implemented and the service range of 480Mbps mode is estimated about 1-2m in the line-of-sight multi-path channel (CMI).

A Performance Evaluation of MB-OFDM UWB System Considering the Domestic DAA Regulation (국내 DAA 기술 기준을 고려한 MB-OFDM UWB 성능 평가)

  • Shin, Cheol-Ho;Choi, Sang-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.1000-1009
    • /
    • 2008
  • The purpose of this paper is to analyze the performance of MB-OFDM UWB system when the interference signal that can be WIMAX signal or 4 G system signal is received by detection limit of -80 dBm/MHz proposed in Korea for DAA(Detect And Avoid) to permit UWB in $3.1{\sim}4.8$ GHz. MB-OFDM UWB system supports two transmission modes; one is TFI(Time frequency Interleaving) mode that transmits OFDM symbols using different carrier frequency from symbol to symbol according to Time Frequency(TF) codes, the other is FFI(Fixed Frequency Interleaving) mode that transmits OFDM symbols using a specific carrier frequency. In this paper, we considered the TX average power and the synchronization structure to reflect the effect of frequency hopping according to TFC. Interference analysis results show that the WiMAX system is fenced thoroughly from UWB interference in domestic DAA regulation, but the performance of MB-OFDM UWB system is degraded seriously by an interference signal with the DAA detection limit even in frequency Hopping mode that can get frequency diversity effect.

Channel Modeling for UWB MB-OFDM System Considering RF Frequency Hopping (RF 주파수 호핑을 고려한 UWB Multi-Band OFDM 시스템 채널 모델 성형)

  • Noh, JungHo;Heo, Joo;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.73-80
    • /
    • 2004
  • In the case of Non-Line-of-Sight (NLOS), common telecommunication systems typically have Rayleigh distributed amplitude characteristics. However measurement result of Ultra Wideband (UWB) Multi-Band Orthogonal Frequency Division Multiplexing (MB-OFDM) system which is proposed as one of candidate standard in IEEE 802. 15. 3a for Wireless Personal Area Network (WPAN) shows that it has independent log normal fading in each cluster as well as in each ray within the cluster. Based on this clustering phenomenon observed, MB-OFDM channel model derived from Saleh-Valenzuela model with a couple of slight modifications. In this paper, channel remodeling for RF frequency hopping in MB-OFDM system is achieved, and performances of MB-OFDM system for each channel mode and data rate are verified using modified channel model.

  • PDF

Fine Frequency Synchronization Method for MB-OFDM UWB Systems

  • You, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8C
    • /
    • pp.613-616
    • /
    • 2008
  • In this paper, a fine residual frequency offset estimation scheme is proposed for multiband orthogonal frequency division multiplexing ultra-wideband (MB-OFDM UWB) systems. The basic idea of our approach is based on the fact that two adjacent OFDM symbols carry the identical information in the MB-OFDM UWB system, thus removing the need of pilot symbols. The mean square error of the synchronization scheme is evaluated and simulation results are used to verify the effectiveness of the proposed estimator. When compared to the pilot-aided conventional estimator, the proposed estimator has a lower estimation error.

Symbol Timing & Carrier Frequency Offset Estimation Method for UWB MB-OFDM System (UWB MB-OFDM 시스템을 위한 심볼 타이밍 및 반송파 주파수 오프셋 추정 기법)

  • Kim Jung-Ju;Wang Yu-Peng;Chang Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.232-239
    • /
    • 2006
  • In this paper, we analyze the preamble model for Wireless PAN(WPAN) in proposed Ultra WideBand(UWB) Multi-Band OFDM(MB-OFDM) system of IEEE 802.15.3a standard. Besides, we propose effective Carrier Frequency Offset and Symbol Timing Offset Estimation algorithm which offers enhanced performance, and analyze its performance using Detection Probability, False Alarm Probability, Missing Probability, Mean Acquisition Time and MSE(Mean Square Error) through simulation in AWGN and UWB channel environments.

Performance Comparison of SFBC/SFTC-OFDM Systems Under MB-OFDM Interference (MB-OFDM UWB 신호 간섭하에서 SFBC/SFTC-OFDM 시스템들의 성능 비교)

  • Kim, Kyung-Seok;Song, Chang-Kun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10A
    • /
    • pp.968-975
    • /
    • 2006
  • Research about the mode of MIMO that can get a coding benefit at the same time with a diversity benefit using a multiple antenna at the fading channel for a high-speed data transmission have been processed actively But the analysis about the interference of UWB system comes not to consist yet. So this paper analyzed the performance of the interference of UWB system to SFBC-OFDM and SFTC-OFDM system that applied a space block code which has a space diversity characteristic to OFDM system at MIMO channel. We shelved the performance that SFTC-OFDM system is robuster than SFBC-OFDM system under MB-OFDM UWB Interference.

A study on the Cost-effective Architecture Design of High-speed Soft-decision Viterbi Decoder for Multi-band OFDM Systems (Multi-band OFDM 시스템용 고속 연판정 비터비 디코더의 효율적인 하드웨어 구조 설계에 관한 연구)

  • Lee, Seong-Joo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.90-97
    • /
    • 2006
  • In this paper, we present a cost-effective architecture of high-speed soft-decision Viterbi decoder for Multi-band OFDM(MB-OFDM) systems. In the design of modem for MB-OFDM systems, a parallel processing architecture is general]y used for the reliable hardware implementation, because the systems should support a very high-speed data rate of at most 480Mbps. A Viterbi decoder also should be designed by using a parallel processing structure and support a very high-speed data rate. Therefore, we present a optimized hardware architecture for 4-way parallel processing Viterbi decoder in this paper. In order to optimize the hardware of Viterbi decoder, we compare and analyze various ACS architectures and find the optimal one among them with respect to hardware complexity and operating frequency The Viterbi decoder with a optimal hardware architecture is designed and verified by using Verilog HDL, and synthesized into gate-level circuits with TSMC 0.13um library. In the synthesis results, we find that the Viterbi decoder contains about 280K gates and works properly at the speed required in MB-OFDM systems.