• Title/Summary/Keyword: MAPK3

Search Result 626, Processing Time 0.023 seconds

A Network Pharmacology-based Study to Explore the Potential Mechanism of Artemisia capillaris Thunb. for Psoriasis Vulgaris (네트워크 약리학을 활용한 심상성 건선에 대한 인진호(茵蔯蒿)의 잠재적 작용 기전 탐색 연구)

  • Kim, Jundong;Seo, Gwang-Yeel;Kim, Byunghyun;Lee, Hanlim;Kim, Kyu-Seok;Kim, Yoon-Bum
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.35 no.3
    • /
    • pp.15-24
    • /
    • 2022
  • Objectives : The purpose of this study is to investigate the potential mechanism of Artemisia capillaris Thunb. for psoriasis vulgaris. Methods : We conducted the network pharmacological analysis. It contains the process that search the compounds of the herb, the target proteins of the compounds, related genes of psoariasis vulgaris and the pathway/terms of the common protein lists between psoriasis vulgaris and Artemisia capillaris Thunb.. Results : 13 compounds and 30 protein targets of Artemisia Capillaris Herba were searched. And 997 psoriasis-related genes were searched. The common proteins were 11, and the core genes were 3; AKT1, CASP3, MAPK8. The related pathway/terms of 11 proteins were analyzed. ω-hydroxylase P450 pathway(60%), nitric oxide(NO) biosynthetic process(20%) were resulted. Also, 19 proteins of Artemisia Capillaris Herba were analyzed, and sterol homeostasis(78.95%), sterol biosynthetic process(15.79%), Type 2 diabetes mellitus(5.26%) were resulted. Conclusion : The Artemisia Capillaris Herba can potentially act through the ω-hydroxylase P450 pathway and nitric oxide(NO) biosynthetic process for psoriasis. Also, the metabolism of sterol biosynthesis and homeostasis can be involved in a roundabout way for psoriasis.

Inhibitory Effect of Dendrobium moniliforme on Degranulation and Histidine Decarboxylase Expression in RBL-2H3 Cells (RBL-2H3 세포에서 탈과립과 histidine decarboxylase 발현에 미치는 석곡(Dendrobium monilifrme)의 효과)

  • Young Ji Lee;Iskander Madhi;YoungHee Kim
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.176-182
    • /
    • 2023
  • The stems of Dendrobium moniliforme are used in traditional Oriental medicine as a Yin tonic to nourish the stomach, promote the production of body fluid, and reduce fever. This study investigated the effects of the aqueous extract of D. moniliforme stems (DME) on mast cell degranulation and the expression of tumor necrosis factor-α (TNF-α), interleukin-4 (IL-4), and histamine-synthesizing enzyme histidine decarboxylase (HDC). We used rat mast cell line RBL-2H3 cells and stimulated them with PMA plus calcium ionophore (PMACI). Pretreatment with DME significantly inhibited PMACI-induced β-hexosaminidase release and the expression of TNF-α, IL-4, and HDC. Furthermore, DME suppressed PMACI-induced nuclear translocation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein 1 (AP-1). In addition, HDC expression was inhibited by SP600125 (JNK inhibitor), PD98059 (ERK inhibitor), and SB203580 (p38 kinase inhibitor). Finally, the phosphorylation of p38 kinase, extracellular signal-regulated kinase 1/2 (ERK1/2), and c-Jun N-terminal kinase (JNK) was inhibited by pretreatment with DME. These results suggest that DME has inhibitory effects against degranulation, cytokine (TNF-α and IL-4) and HDC expression, and that HDC expression is mediated by MAPK signaling. These findings suggest that DME may have therapeutic potential in the treatment of hypersensitive and inflammatory diseases.

Indigo Naturalis in Inflammatory Bowel Disease: mechanisms of action and insights from clinical trials

  • Hyeonjin Kim;Soohyun Jeong;Sung Wook Kim;Hyung-Jin Kim;Dae Yong Kim;Tae Han Yook;Gabsik Yang
    • Journal of Pharmacopuncture
    • /
    • v.27 no.2
    • /
    • pp.59-69
    • /
    • 2024
  • This study investigates the therapeutic potential of Indigo Naturalis (IN) in treating a Inflammatory Bowel Disease (IBD). The objective is to comprehensively examine the effects and pharmacological mechanisms of IN on IBD, assessing its potential as an novel treatment for IBD. Analysis of 11 selected papers is conducted to understand the effects of IN, focusing on compounds like indirubin, isatin, indigo, and tryptanthrin. This study evaluates their impact on Disease Activity Index (DAI) score, colon length, mucosal damage, and macrophage infiltration in Dextran Sulfate Sodium (DSS)-induced colitis mice. Additionally, It investigate into the anti-inflammatory mechanisms, including Aryl hydrocarbon Receptor (AhR) pathway activation, Nuclear Factor kappa B (NF-κB)/nod-like receptor family pyrin domain containing 3 (NLRP3)/Interleukin 1 beta (IL-1β) inhibition, and modulation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MYD88)/NF-κB and Mitogen Activated Protein Kinase (MAPK) pathways. Immunomodulatory effects on T helper 17 (Th17)/regulatory T cell (Treg cell) balance and Glycogen synthase kinase-3 beta (GSK3-β) expression are also explored. Furthermore, the study addresses the role of IN in restoring intestinal microbiota diversity, reducing pathogenic bacteria, and increasing beneficial bacteria. The findings reveal that IN, particularly indirubin and indigo, demonstrates significant improvements in DAI score, colon length, mucosal damage, and macrophage infiltration in DSS-induced colitis mice. The anti-inflammatory effects are attributed to the activation of the AhR pathway, inhibition of inflammatory pathways, and modulation of immune responses. These results exhibit the potential of IN in IBD treatment. Notably, the restoration of intestinal microbiota diversity and balance further supports its efficacy. IN emerges as a promising and effective treatment for IBD, demonstrating anti-inflammatory effects and positive outcomes in preclinical studies. However, potential side effects necessitate further investigation for safe therapeutic development. The study underscores the need for future research to explore a broader range of active ingredients in IN to enhance therapeutic efficacy and safety.

Anti-Inflammatory Effect of Chondrus ocellatus Holmes Ethanol Extract on Lipopolysaccharide-induced Inflammatory Responses in RAW 264.7 Cells (Lipopolysaccharide로 유도된 RAW 264.7 세포와 마우스모델에 대한 진두발 에탄올 추출물의 항염증 효과)

  • Bae, Nan-Young;Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Park, Ji-Hye;Park, Sun-Hee;Sung, Nak-Yun;Byun, Eui-Hong;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.268-277
    • /
    • 2016
  • This study aimed to investigate the anti-inflammatory effect of the ethanol extract from Chondrus ocellatus Holmes (COHEE) in RAW 264.7 cells and in a mouse ear edema model, by measuring the production of lipopolysaccharide-induced inflammatory response mediators. There were no cytotoxic effects on the proliferation of macrophages treated with COHEE compared with the control. COHEE inhibited the production of nitric oxide and pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor-α, and IL-1β]. The extract also reduced the expression of inducible nitric oxide synthase, cyclooxygenase-2, nuclear factor-κB p65, and phosphorylated mitogen-activated protein kinase in a dose-dependent manner. In the croton-oil-induced ear edema model, COHEE decreased the formation of mouse ear edema at the highest dose compared with the control, and histological analysis revealed that the epidermal/dermal tissue thickness and mast cell numbers were reduced. Therefore, these results suggest that COHEE may be a promising topical anti-inflammatory therapeutic material through its action of modulating NF-κB and the MAPK signaling pathway.

Correlation between Clinicopathology and Expression of HSP70, BAG1 and Raf-1 in Human Diffuse Type Gastric Carcinoma (미만형 위암에서 임상병리학적 인자와 Hsp70, BAG1과 Raf-1 발현간의 상관성)

  • Jung, Sang Bong;Lee, Hyoun Wook;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.101-108
    • /
    • 2016
  • The aim of this study was to evaluate the relationships between the expression of Heat shock protein70 (HSP70), Raf-1 and Bcl-2-associated athanogene-1 (BAG1) protein in diffuse type gastric carcinoma and examine association of HSP70, Raf-1 and BAG1 expression with various clinic-pathological factors and survival. Heat shock protein70 is induced in the cells in response to various stress conditions, including carcinogens. Overexpression of heat shock protein 70 has been observed in many types of cancer. The proto-oncoprotein Raf is pivotal for mitogen-activated protein kinase (MAPK) signaling, and its aberrant activation has been implicated in multiple human cancers. Overexpression of BAG1 protein has been documented in some type of human cancer. BAG1 has been reported to interact with protein involved with a variety of signal pathway, and regulation of cell differentiation, survival and apoptosis. These interaction partners include HSP70 and Raf-1. The percentage of tumors exhibiting HSP70 positivity was significantly in cases of positive lymph node metastasis (64.9%) compared to cases without lymph node metastasis (35.1%, p=0.007). HS70 expression was correlated with pathological N-stage (p=0.006). Expression of BAG1 was detected in the majority of diffuse type gastric carcinoma tissues (71.7%), especially in younger patients (80% vs 52.6%, p=0.035). Furthermore BAG1 expression was correlated with tumor size (p=0.020). Raf-1 expression was found to be significantly associated with tumor size (p=0.005). The result indicate that HSP70 was significantly correlated the progression of diffuse type gastric cancer. Expression of BAG1 and Raf-1 may be used as diagnostic markers for gastric carcinoma.

Functional Screening for Cell Death Suppressors and Development of Multiple Stress-Tolerant Plants

  • Moon, Hae-Jeong;Baek, Dong-Won;Lee, Ji-Young;Nam, Jae-Sung;Yun, Dae-Jin
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2003.04a
    • /
    • pp.65-71
    • /
    • 2003
  • Bax, a mammalian pro-apoptotic member of the Bcl-2 family, induces cell death when expressed in yeast. To investigate whether Bax expression can induce cell death in plant, we produced transgenic Arabidopsis plants that contained murine Bax cDNA under control of a glucocorticoid-inducible promoter. Transgenic plants treated with dexamethasone, a strong synthetic glucocorticoid, induced Bax accumulation and cell death, suggesting that some elements of cell death mechanism by Bax may be conserved among various organisms. Therefore, we developed novel yeast genetic system, and cloned several Plant Bax Inhibitors (PBIs). Here, we report the function of two PBIs in detail. PBI1 is ascorbate peroxidase (sAPX). Fluorescence method of dihydrorho-damine 123 oxidation revealed that expression of Bax in yeast cells generated reactive oxygen species (ROS), and which was greatly reduced by co-expression with sAPX. These results suggest that sAPX inhibits the generation of ROS by Bax, which in turn suppresses Baxinduced cell death in yeast. PBI2 encodes nucleoside diphosphate kinase (NDPK). ROS stress strongly induces the expression of the NDPK2 gene in Arabidopsis thaliana (AtNDPK2). Transgenic plants overexpressing AtNDPK2 have lower levels of ROS than wildtype plants. Mutants lacking AtNDPK2 had higher levels of ROS than wildtype. $H_2O_2$ treatment induced the phosphorylation of two endogenous proteins whose molecular weights suggested they are AtMPK3 and AtMPK6. In the absence of $H_2O_2$ treatment, phosphorylation of these proteins was slightly elevated in plants overexpressing AtNDPK2 but markedly decreased in the AtNDPK2 deletion mutant. Yeast two-hybrid and in vitro protein pull-down assays revealed that AtNDPK2 specifically interacts with AtMPK3 and AtMPK6. Furthermore, AtNDPK2 also enhances the MBP phosphorylation activity of AtMPK3 in vitro. Finally, constitutive overexpression of AtNDPK2 in Arabidopsis plants conferred an enhanced tolerance to multiple environmental stresses that elicit ROS accumulation in situ. Thus, AtNDPK2 appears to play a novel regulatory role in $H_2O_2$-mediated MAPK signaling in plants.

  • PDF

A novel herbal formulation consisting of red ginseng extract and Epimedium koreanum Nakai-attenuated dextran sulfate sodium-induced colitis in mice

  • Saba, Evelyn;Lee, Yuan Yee;Kim, Minki;Hyun, Sun-Hee;Park, Chae-Kyu;Son, Eunjung;Kim, Dong-Seon;Kim, Sung-Dae;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.833-842
    • /
    • 2020
  • Background: Ulcerative colitis (UC) is a commonly encountered large intestine disease in the contemporary world that terminates into colorectal cancer; therefore, the timely treatment of UC is of major concern. Panax ginseng Meyer is an extensively consumed herbal commodity in South East Asian countries, especially Korea. It exhibits a wide range of biologically beneficial qualities for almost head-to-toe ailments in the body. Epimedium koreanum Nakai (EKN) is also a widely used traditional Korean herbal medicine used for treating infertility, rheumatism, and cardiovascular diseases. Materials and methods: Separately the anti-inflammatory activities of both red ginseng extracts (RGEs) and EKNs had been demonstrated in the past in various inflammatory models; however, we sought to unravel the anti-inflammatory activities of the combination of these two extracts in dextran sulfate sodium (DSS)-induced ulcerative colitis in mice model because the allopathic remedies for UC involve more side effects than benefits. Results: Our results have shown that the combination of RGE + EKN synergistically alleviated the macroscopic lesions in DSS-induced colitic mice such as colon shortening, hematochezia, and weight loss. Moreover, it restored the histopathological lesions in mice and decreased the levels of proinflammatory mediators and cytokines through the repression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP-3) expression. In vitro, this combination also reduced the magnitude of nitric acid (NO), proinflammatory mediators and cytokine through NF-κB and mitogen-activated protein kinase (MAPK) pathways in RAW 264.7 mouse macrophage cells. Conclusion: In the light of these findings, we can endorse this combination extract as a functional food for the prophylactic as well as therapeutic treatment of UC in humans together with allopathic remedies.

Sphingosine 1-Phosphate-induced Signal Transduction in Cat Esophagus Smooth Muscle Cells

  • Song, Hyun Ju;Choi, Tai Sik;Chung, Fa Yong;Park, Sun Young;Ryu, Jung Soo;Woo, Jae Gwang;Min, Young Sil;Shin, Chang Yell;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.42-51
    • /
    • 2006
  • We investigated the mechanism of contraction induced by S1P in esophageal smooth muscle cells. Western blot analysis demonstrated that $S1P_1$, $S1P_2$, $S1P_3$, and $S1P_5$ receptors existed in the cat esophagus. Only penetration of EDG-5 ($S1P_2$) antibody into permeabilized cells inhibited S1P-induced contraction. Pertussis toxin (PTX) also inhibited contraction, suggesting that it was mediated by $S1P_2$ receptors coupled to a PTXsensitive $G_i$ protein. Specific antibodies to $G_{i2}$, $G_q$ and $G_{\beta}$ inhibited contraction, implying that the S1P-induced contraction depends on PTX-insensitive $G_q$ and $G_{\beta}$ dimers as well as the PTX-sensitive $G_{i2}$. Contraction was not affected by the phospholipase $A_2$ inhibitor DEDA, or the PLD inhibitor ${\rho}$-chloromercuribenzoate, but it was abolished by the PLC inhibitor U73122. Incubation of permeabilized cells with $PLC{\beta}3$ antibody also inhibited contraction. Contraction involved the activation of a PKC pathway since it was affected by GF109203X and chelerythrine. Since $PKC{\varepsilon}$ antibody inhibited contraction, $PKC{\varepsilon}$ may be required. Preincubation of the muscle cells with the MEK inhibitor PD98059 blocked S1P-induced contraction, but the p38 MAP kinase inhibitor SB202190 did not. In addition, co-treatment of cells with GF 109203X and PD98059 did not have a synergistic effect, suggesting that these two kinases are involved in the same signaling pathway. Our data suggest that S1P-induced contraction in esophageal smooth muscle cells is mediated by $S1P_2$ receptors coupled to PTX-sensitive $G_{i2}$ proteins, and PTX-insensitive $G_q$ and $G_{\beta}$ proteins, and that the resulting activation of the $PLC{\beta}3$ and $PKC{\varepsilon}$ pathway leads to activation of a p44/p42 MAPK pathway.

Effects of Korean Red Ginseng extract on tissue plasminogen activator and plasminogen activator inhibitor-1 expression in cultured rat primary astrocytes

  • Ko, Hyun Myung;Joo, So Hyun;Kim, Pitna;Park, Jin Hee;Kim, Hee Jin;Bahn, Geon Ho;Kim, Hahn Young;Lee, Jongmin;Han, Seol-Heui;Shin, Chan Young;Park, Seung Hwa
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.401-412
    • /
    • 2013
  • Korean Red Ginseng (KRG) is an oriental herbal preparation obtained from Panax ginseng Meyer (Araliaceae). To expand our understanding of the action of KRG on central nervous system (CNS) function, we examined the effects of KRG on tissue plasminogen activator (tPA)/plasminogen activator inhibitor-1 (PAI-1) expression in rat primary astrocytes. KRG extract was treated in cultured rat primary astrocytes and neuron in a concentration range of 0.1 to 1.0 mg/mL and the expression of functional tPA/PAI-1 was examined by casein zymography, Western blot and reverse transcription-polymerase chain reaction. KRG extracts increased PAI-1 expression in rat primary astrocytes in a concentration dependent manner (0.1 to 1.0 mg/mL) without affecting the expression of tPA itself. Treatment of 1.0 mg/mL KRG increased PAI-1 protein expression in rat primary astrocytes to $319.3{\pm}65.9%$ as compared with control. The increased PAI-1 expression mediated the overall decrease in tPA activity in rat primary astrocytes. Due to the lack of PAI-1 expression in neuron, KRG did not affect tPA activity in neuron. KRG treatment induced a concentration dependent activation of PI3K, p38, ERK1/2, and JNK in rat primary astrocytes and treatment of PI3K or MAPK inhibitors such as LY294002, U0126, SB203580, and SP600125 (10 ${\mu}M$ each), significantly inhibited 1.0 mg/mL KRG-induced expression of PAI-1 and down-regulation of tPA activity in rat primary astrocytes. Furthermore, compound K but not other ginsenosides such as Rb1 and Rg1 induced PAI-1 expression. KRG-induced up-regulation of PAI-1 in astrocytes may play important role in the regulation of overall tPA activity in brain, which might underlie some of the beneficial effects of KRG on CNS such as neuroprotection in ischemia and brain damaging condition as well as prevention or recovery from addiction.

Novel Isoquinolinamine and Isoindoloquinazolinone Compounds Exhibit Antiproliferative Activity in Acute Lymphoblastic Leukemia Cells

  • Roolf, Catrin;Saleweski, Jan-Niklas;Stein, Arno;Richter, Anna;Maletzki, Claudia;Sekora, Anett;Escobar, Hugo Murua;Wu, Xiao-Feng;Beller, Matthias;Junghanss, Christian
    • Biomolecules & Therapeutics
    • /
    • v.27 no.5
    • /
    • pp.492-501
    • /
    • 2019
  • Nitrogen-containing heterocycles such as quinoline, quinazolinones and indole are scaffolds of natural products and have broad biological effects. During the last years those structures have been intensively synthesized and modified to yield new synthetic molecules that can specifically inhibit the activity of dysregulated protein kinases in cancer cells. Herein, a series of newly synthesized isoquinolinamine (FX-1 to 8) and isoindoloquinazolinone (FX-9, FX-42, FX-43) compounds were evaluated in regards to their anti-leukemic potential on human B- and T- acute lymphoblastic leukemia (ALL) cells. Several biological effects were observed. B-ALL cells (SEM, RS4;11) were more sensitive against isoquinolinamine compounds than T-ALL cells (Jurkat, CEM). In SEM cells, metabolic activity decreased with $10{\mu}M$ up to 26.7% (FX-3), 25.2% (FX-7) and 14.5% (FX-8). The 3-(p-Tolyl) isoquinolin-1-amine FX-9 was the most effective agent against B- and T-ALL cells with IC50 values ranging from 0.54 to $1.94{\mu}M$. None of the tested compounds displayed hemolysis on erythrocytes or cytotoxicity against healthy leukocytes. Anti-proliferative effect of FX-9 was associated with changes in cell morphology and apoptosis induction. Further, influence of FX-9 on PI3K/AKT, MAPK and JAK/STAT signaling was detected but was heterogeneous. Functional inhibition testing of 58 kinases revealed no specific inhibitory activity among cancer-related kinases. In conclusion, FX-9 displays significant antileukemic activity in B- and T-ALL cells and should be further evaluated in regards to the mechanisms of action. Further compounds of the current series might serve as templates for the design of new compounds and as basic structures for modification approaches.