• Title/Summary/Keyword: MAPK signal transduction

Search Result 79, Processing Time 0.029 seconds

A novel human KRAB-related zinc finger gene ZNF425 inhibits mitogen-activated protein kinase signaling pathway

  • Wang, Yuequn;Ye, Xiangli;Zhou, Junmei;Wan, Yongqi;Xie, Huaping;Deng, Yun;Yan, Yan;Li, Yongqing;Fan, Xiongwei;Yuan, Wuzhou;Mo, Xiaoyang;Wu, Xiushan
    • BMB Reports
    • /
    • v.44 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • Zinc finger (ZNF) proteins play a critical role in cell growth, proliferation, apoptosis, and intracellular signal transduction. In this paper, we cloned and characterized a novel human KRAB-related zinc finger gene, ZNF425, which encodes a protein of 752 amino acids. ZNF425 is strongly expressed in the three month old human embryos and then is almost undetectable in six month old embryos and in adult tissues. An EGFP-ZNF425 fusion protein can be found in both the nucleus and the cytoplasm. ZNF425 appears to act as a transcription repressor. Over-expression of ZNF425 inhibits the transcriptional activities of SRE, AP-1, and SRF. Deletion analysis indicates that the C2H2 domain is the main region responsible for the repression. Our results suggest that the ZNF425 gene is a new transcriptional inhibitor that functions in the MAPK signaling pathway.

Anti-Inflammatory Effect of Hot Water Extract of Aronia Fruits in LPS-Stimulated RAW 264.7 Macrophages (LPS 자극 RAW 264.7 대식세포에 있어서 아로니아 열매 열수 추출물의 항염증 효과)

  • Yang, Hui;Oh, Kwang-Hoon;Yoo, Yung Choon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • In this study, anti-inflammatory activity of hot water extract of Aronia fruits (AF-H) was examined. Pre-treatment with AF-H significantly inhibited production of nitric oxide (NO) and prostaglandin E-2 in a dose-dependent manner in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The inhibitory effect of AF-H on LPS-induced inflammation was also confirmed by down-regulation of inducible NO synthase as well as cyclooxygenase-2 protein expression. Furthermore, treatment with AF-H significantly inhibited secretion of inflammatory cytokines such as tumor-necrosis $factor-{\alpha}$ and interleukin-6. Signal transduction pathway studies further indicated that AF-H inhibited LPS-induced activation of nuclear $factor-{\kappa}B$, but not mitogen-activated protein kinase. Treatment with AF-H also partially protected against LPS-induced lethal shock in C57BL/6 mice, although its effect was not statistically significant. These results suggest that AF-H is a more promising nutraceutical or medicinal agent for inhibition of LPS-induced inflammation or inflammation-related diseases.

Stage specific transcriptome analysis of liver tissue from a crossbred Korean Native Pig (KNP × Yorkshire)

  • Kumar, Himansu;Srikanth, Krishnamoorthy;Park, Woncheol;Lee, Kyung-Tai;Choi, Bong-Hwan;Kim, Jun-Mo;Lim, Dajeong;Park, Jong-Eun
    • Journal of Biomedical and Translational Research
    • /
    • v.19 no.4
    • /
    • pp.116-124
    • /
    • 2018
  • Korean Native Pig (KNP) has a uniform black coat color, excellent meat quality, white colored fat, solid fat structure and good marbling. However, its growth performance is low, while the western origin Yorkshire pig has high growth performance. To take advantage of the unique performance of the two pig breeds, we raised crossbreeds (KNP ${\times}$ Yorkshire to make use of the heterotic effect. We then analyzed the liver transcriptome as it plays an important role in fat metabolism. We sampled at two stages: 10 weeks and at 26 weeks. The stages were chosen to correspond to the change in feeding system. A total of 16 pigs (8 from each stage) were sampled and RNA sequencing was performed. The reads were mapped to the reference genome and differential expression analysis was performed with edgeR package. A total of 324 genes were found to be significantly differentially expressed (${\left|log2FC\right|}$ > 1 & q < 0.01), out of which 180 genes were up-regulated and 144 genes were down-regulated. Principal Component Analysis (PCA) showed that the samples clustered according to stages. Functional annotation of significant DEGs (differentially expressed genes) showed that GO terms such as DNA replication, cell division, protein phosphorylation, regulation of signal transduction by p53 class mediator, ribosome, focal adhesion, DNA helicase activity, protein kinase activity etc. were enriched. KEGG pathway analysis showed that the DEGs functioned in cell cycle, Ras signaling pathway, p53 signaling pathway, MAPK signaling pathway etc. Twenty-nine transcripts were also part of the DEGs, these were predominantly Cys2His2-like fold group (C2H2) family of zinc fingers. A protein-protein interaction (PPI) network analysis showed that there were three highly interconnected clusters, suggesting an enrichment of genes with similar biological function. This study presents the first report of liver tissue specific gene regulation in a cross-bred Korean pig.

Skin Care Effects of Green Tea (녹차의 피부보호효과)

  • Lee, Byeong-Gon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.4 s.54
    • /
    • pp.311-321
    • /
    • 2005
  • Tea (Camellia sinenis) is a popular beverage consumed worldwide. Since green tea, mainly consumed in Asia, has various biological activities, green tea components became one of the most favorite candidates as a functional materials for cosmetics and functional foods. The biological activities of green tea for skin cue have been ranged from protection of epidermal cells to the stimulation of extracellular matrix (ECM) biosynthesis. Green tea polyphenols (GTPs), which are active ingredients of green tea, possess anti-inflammatory, anti-carcinogenic and immune potentiation properties as well as antioxidant. They also modulate intracellular signal transduction pathways. GTPs decrease ultraviolet (UV)-induced oxidative stress, thus suppress mitogen-activated protein kinase (MAPK) pathway and apoptosis in keratinocytes. In addition, GTPs prevent the Induction of inflammatory mediators, such as cyclooxygenase-2 (COX-2), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) by tumor necrosis factor alpha $(TNF{\alpha})$ or chemical treatment in keratinocytes. GTPs treatment protects from chemical-or UV-induced skin tumor incidence in animal experiment. Besides, GTPs stimulate keratinocyte differentiation and proliferation of normal and aged epidermal cells, resectively, and suppress matrix metalloproteinases (MMPs) release. According to the progress of formulation study, green tea components will be guaranteed materials for the more effective skin cue products.

MEKK3 and Survivin Expression in Cervical Cancer: Association with Clinicopathological Factors and Prognosis

  • Cao, Xue-Quan;Lu, Hong-Sheng;Zhang, Ling;Chen, Li-Li;Gan, Mei-Fu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5271-5276
    • /
    • 2014
  • Mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 3 (MEKK3) is an important protein kinase and a member of the MAPK family, which regulates cellular responses to environmental stress and serves as key integration points along the signal transduction cascade that not only link diverse extracellular stimuli to subsequent signaling molecules but also amplify the initiating signals to ultimately activate effector molecules and induce cell proliferation, differentiation and survival. To explore the relationship between MEKK3 and cell apoptosis, clinicopathology and prognosis, we characterize the expression of MEKK3 and survivin in cervical cancer. MEKK3 and survivin expression was measured by RT-PCR and Western blotting of fresh surgical resections from 30 cases of cervical cancer and 25 cases of chronic cervicitis. Protein expression was detected by tissue microarray and immunochemistry (En Vision) in 107 cases of cervical cancer, 86 cases of cervical intraepithelial neoplasia (CIN), and 35 cases of chronic cervicitis. Expression patterns were analyzed for their association with clinicopathological factors and prognosis in cervical cancer. Expression of MEKK3 and survivin mRNA was significantly higher in cervical cancer than in the controls (p<0.05). MEKK3 and survivin expression differed significantly between cervical carcinoma, CIN, and cervicitis (p<0.05) and correlated with clinical stage, infiltration depth, and lymph node metastasis (p<0.05). MEKK3 expression was positively correlated with survivin (p<0.05). Kaplan-Meier survival analysis showed that MEKK3 and survivin expression, lymph node metastasis, depth of invasion, and FIGO stage reduce cumulative survival. Cox multivariate regression analysis showed that MEKK3, survivin, and clinical staging are independent prognostic factors in cervical cancer (p<0.05). Expression of MEKK3 and survivin are significantly increased in cervical cancer, their overexpression participating in the occurrence and development of cervical cancer, with protein expression and clinical staging acting as independent prognostic factors for patients with cervical cancer.

Phosphorylation of Transcriptional Factor by Mitogen-activated Protein (MAP) Kinase Purified from Nucleus (핵 내에서 분리한 Mitogen-Activated Protein (MAP) Kinase의 Transcription Factor에 대한 인산화)

  • 김윤석;김소영;김태우
    • Biomedical Science Letters
    • /
    • v.2 no.2
    • /
    • pp.175-185
    • /
    • 1996
  • The mitogen-activated protein(MAP) kinase signal transduction pathway represents an important mechanism by which mitogen, such as serum and PMA, regulate cell proliferation and differentiation. Target substrates of the MAP kinase are located within several compartments containing plasma membranes and nucleus. We now report that serum addition induces proliferation of the P388 murine leukemia cell, but PMA does not, while both serum and PMA treatment cause translocation of the MAP kinase, mainly p42$^{mapk}$ isoform, from cytosol into the nucleus, which was monitored by immunoblot analysis using polyclonal anti-ERK1 antibodies. We investigated whether the MAP kinase was capable of phosphorylating c-Jun protein and GST-fusion proteins, the P562$^{kk}$N-terminal peptides (1-77 or 1-123 domain) of the T cell tyrosine kinase, using the partially purified MAP kinase by SP-sephadex C-50, phenyl superose and Mono Q column chromatography. We found that the partially purified MAP kinase was able to phosphorylate c-Jun protein and the GST-fusion protein expressed using E.coli DH5$\alpha$ which is transformed with pGEX-3Xb plasmid vector carrying of p562$^{kk}$N-terminal peptide-encoding DNA. These results imply that tyrosine kinase receptor/Ras/Raf/MAP kinase pathway is a major mechanism for mitogen-induced cell proliferation in P388 murine leukemia cell and that the various MAP kinase isoforms may have their own target substrates located in distinct subcellular compartments.

  • PDF

Sphingosine 1-Phosphate-induced Signal Transduction in Cat Esophagus Smooth Muscle Cells

  • Song, Hyun Ju;Choi, Tai Sik;Chung, Fa Yong;Park, Sun Young;Ryu, Jung Soo;Woo, Jae Gwang;Min, Young Sil;Shin, Chang Yell;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.42-51
    • /
    • 2006
  • We investigated the mechanism of contraction induced by S1P in esophageal smooth muscle cells. Western blot analysis demonstrated that $S1P_1$, $S1P_2$, $S1P_3$, and $S1P_5$ receptors existed in the cat esophagus. Only penetration of EDG-5 ($S1P_2$) antibody into permeabilized cells inhibited S1P-induced contraction. Pertussis toxin (PTX) also inhibited contraction, suggesting that it was mediated by $S1P_2$ receptors coupled to a PTXsensitive $G_i$ protein. Specific antibodies to $G_{i2}$, $G_q$ and $G_{\beta}$ inhibited contraction, implying that the S1P-induced contraction depends on PTX-insensitive $G_q$ and $G_{\beta}$ dimers as well as the PTX-sensitive $G_{i2}$. Contraction was not affected by the phospholipase $A_2$ inhibitor DEDA, or the PLD inhibitor ${\rho}$-chloromercuribenzoate, but it was abolished by the PLC inhibitor U73122. Incubation of permeabilized cells with $PLC{\beta}3$ antibody also inhibited contraction. Contraction involved the activation of a PKC pathway since it was affected by GF109203X and chelerythrine. Since $PKC{\varepsilon}$ antibody inhibited contraction, $PKC{\varepsilon}$ may be required. Preincubation of the muscle cells with the MEK inhibitor PD98059 blocked S1P-induced contraction, but the p38 MAP kinase inhibitor SB202190 did not. In addition, co-treatment of cells with GF 109203X and PD98059 did not have a synergistic effect, suggesting that these two kinases are involved in the same signaling pathway. Our data suggest that S1P-induced contraction in esophageal smooth muscle cells is mediated by $S1P_2$ receptors coupled to PTX-sensitive $G_{i2}$ proteins, and PTX-insensitive $G_q$ and $G_{\beta}$ proteins, and that the resulting activation of the $PLC{\beta}3$ and $PKC{\varepsilon}$ pathway leads to activation of a p44/p42 MAPK pathway.

Inhibitory Effect of Chloroform Extract of Marine Algae Hizikia Fusifomis on Angiogenesis (Hizikia fusiformis 클로로포름 추출물의 in vitro 및 in vivo 혈관신생 억제 연구)

  • Myeong-Eun Jegal;Yu-Seon Han;Shi-Young Park;Ji-Hyeok Lee;Eui-Yeun Yi;Yung-Jin Kim
    • Journal of Life Science
    • /
    • v.34 no.6
    • /
    • pp.399-407
    • /
    • 2024
  • Angiogenesis is the process by which new blood vessels form from existing blood vessels. This phenomenon occurs during growth, healing, and menstrual cycle changes. Angiogenesis is a complex and multifaceted process that is important for the continued growth of primary tumors, metastasis promotion, the support of metastatic tumors, and cancer progression. Impaired angiogenesis can lead to cancer, autoimmune diseases, rheumatoid arthritis, cardiovascular disease, and delayed wound healing. Currently, there are only a handful of effective antiangiogenic drugs. Recent studies have shown that natural marine products exhibit antiangiogenic effects. In a previous study, we reported that the hexane extract of H. fusiformis (HFH) could inhibit the development of new blood vessels both in vitro and in vivo. The aim of this study was to describe the inhibitory effect of chloroform extracts of H. fusiformis on angiogenesis. To investigate how chloroform extract prevents blood vessel growth, we examined its effects on HUVEC, including cell migration, invasion, and tube formation. In a mouse Matrigel plug assay, H. fusiformis chloroform extract (HFC) also inhibited angiogenesis in vivo. Certain proteins associated with blood vessel growth were reduced after HFC treatment. These proteins include vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK)/extracellular signal transduction kinase, and serine/threonine kinase 1 (AKT). These studies have shown that the chloroform extract of H. fusiformis can inhibit blood vessel growth both in vitro and in vivo.

Gene Expression Profiles in Cervical Cancer with Radiation Therapy Alone and Chemo-radiation Therapy (자궁경부암의 방사선치료 및 방사선항암화학 병용치료에 따른 유전자발현 조절양상)

  • Lee Kyu Chan;Kim Meyoung-kon;Kim Jooyoung;Hwang You Jin;Choi Myung Sun;Kim Chul Yong
    • Radiation Oncology Journal
    • /
    • v.21 no.1
    • /
    • pp.54-65
    • /
    • 2003
  • Purpose : To analyze the gene expression Profiles of uterine ceulcal cancer, and its variation after radiation therapy, with or without concurrent chemotherapy, using a CDNA microarray. Materials and Methods :Sixteen patients, 8 with squamous ceil carcinomas of the uterine cervix, who were treated with radiation alone, and the other 8 treated w14h concurrent chemo-radiation, were Included in the study. Before the starling of the treatment, tumor biopsies were carried out, and the second time biopsies were peformed after a radiation dose of 16.2$\~$27 Gy. Three normal cervix tissues were used as a control group. The microarray experiments were peformed with 5 groups of the total RNAs extracted individually and then admixed as control, pre-radiation therapy alone, during-radiation therapy alone, pre-chemoradiation therapy, and during-chemoradlation therapy. The 33P-iabeled CDNAS were synthesized from the total RNAs of each group, by reverse transcription, and then they were hybridized to the CDNA microarray membrane. The gene expression of each microarrays was captured by the intensity of each spot produced by the radioactive isotopes. The pixels per spot were counted with an Arrayguage, and were exported to Microsoft Excel The data were normalized by the Z transformation, and the comparisons were peformed on the Z-ratio values calculated. Results : The expressions of 15 genes, including integrin linked kinase (ILK), CDC28 protein kinase 2, Spry 2, and ERK 3, were increased with the Z-ratio values of over 2.0 for the cervix cancer tissues compared to those for the normal controls. Those genes were involved In cell growth and proliferation, cell cycle control, or signal transduction. The expressions of the other 6 genes, Including G protein coupled receptor kinase 5, were decreased with the Z-ratio values of below -2.0. After the radiation thorapy, most of the genes, with a previously Increase expressions, represented the decreased expression profiles, and the genes, with the Z-ratio values of over 2.0, were cyclic nucleotlde gated channel and 3 Expressed sequence tags (EST). In the concurrent chemo-radiation group, the genes involved in cell growth and proliferation, cell cycle control, and signal transduction were shown to have increased expressions compared to the radiation therapy alone group. The expressions of genes involved in anglogenesis (angiopoietln-2), immune reactions (formyl peptide receptor-iike 1), and DNA repair (CAMP phosphodiesterase) were increased, however, the expression of gene involved In apoptosls (death associated protein kinase) was decreased. Conclusion : The different kinds of genes involved in the development and progression of cervical cancer were identified with the CDNA microarray, and the proposed theory is that the proliferation signal stalls with ILK, and is amplified with Spry 2 and MAPK signaling, and the cellular mitoses are Increased with the increased expression oi Cdc 2 and cell division kinases. After the radiation therapy, the expression profiles demonstrated 4he evidence of the decreased cancer cell proliferation. There was no sigificant difference in the morphological findings of cell death between the radiation therapy aione and the chemo-radiation groups In the second time biopsy specimen, however, the gene expression profiles were markedly different, and the mechanism at the molecular level needs further study.