• 제목/요약/키워드: MAP Kinases

검색결과 121건 처리시간 0.024초

Inhibitory Effects of Lactobacillus plantarum Lipoteichoic Acid (LTA) on Staphylococcus aureus LTA-Induced Tumor Necrosis Factor-Alpha Production

  • Kim, Han-Geun;Lee, Seung-Yeon;Kim, Na-Ra;Ko, Mi-Yeon;Lee, Jung-Min;Yi, Tae-Hoo;Chung, Sung-Kyun;Chung, Dae-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1191-1196
    • /
    • 2008
  • Staphylococcus aureus is a common etiologic agent for Gram-positive sepsis, and its lipoteichoic acid (LTA) may be important in causing Gram-positive bacterial septic shock. Here, we demonstrate that highly purified LTA (pLTA) isolated from Lactobacillus plantarum inhibited S. aureus LTA (aLTA)-induced TNF-${\alpha}$ production in THP-1 cells. Whereas pLTA scarcely induced TNF-${\alpha}$ production, aLTA induced excessive TNF-${\alpha}$ production. Interestingly, aLTA-induced TNF-${\alpha}$ production was inhibited by pLTA pretreatment. Compared with pLTA, aLTA induced a strong signal transduction through the MyD88, NF-${\kappa}B$, and MAP kinases. This signaling, however, was reduced by a pLTA pretreatment, and resulted in the inhibition of aLTA-induced TNF-${\alpha}$ production. Whereas dealanylated LTAs, as well as native LTAs, contributed to TNF-${\alpha}$ induction or TNF-${\alpha}$ reduction, deacylated LTAs did not, indicating that the acyl chain of LTA played an important role in the LTA-mediated immune regulation. These results suggest that pLTA may act as an antagonist for aLTA, and that an antagonistic pLTA may be a useful agent for suppressing the septic shock caused by Gram-positive bacteria.

Oncogenic Ras downregulates mdr1b expression through generation of reactive oxygen species

  • Jun, Semo;Kim, Seok Won;Kim, Byeol;Chang, In-Youb;Park, Seon-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권3호
    • /
    • pp.267-276
    • /
    • 2020
  • T In the present study, we investigated the effect of oncogenic H-Ras on rat mdr1b expression in NIH3T3 cells. The constitutive expression of H-RasV12 was found to downregulate the mdr1b promoter activity and mdr1b mRNA expression. The doxorubicin-induced mdr1b promoter activity of the H-RasV12 expressing NIH3T3 cells was markedly lower than that of control NIH3T3 cells. Additionally, there is a positive correlation between the level of H-RasV12 expression and a sensitivity to doxorubicin toxicity. To examine the detailed mechanism of H-RasV12-mediated down-regulation of mdr1b expression, antioxidant N-acetylcysteine (NAC) and NADPH oxidase inhibitor diphenylene iodonium (DPI) were used. Pretreating cells with either NAC or DPI significantly enhanced the oncogenic H-Ras-mediated down-regulation of mdr1b expression and markedly prevented doxorubicin-induced cell death. Moreover, NAC and DPI treatment led to a decrease in ERK activity, and the ERK inhibitors PD98059 or U0126 enhanced the mdr1b-Luc activity of H-RasV12-NIH3T3 and reduced doxorubicin-induced apoptosis. These data suggest that RasV12 expression could downregulate mdr1b expression through intracellular reactive oxygen species (ROS) production, and ERK activation induced by ROS, is at least in part, contributed to the downregulation of mdr1b expression.

Src Kinase Regulates Nitric Oxide-induced Dedifferentiation and Cyc1ooxygenase-2 Expression in Articular Chondrocytes via p38 Kinase-dependent Pathway

  • Yu, Seon-Mi;Lee, Won-Kil;Yoon, Eun-Kyung;Lee, Ji-Hye;Lee, Sun-Ryung;Kim, Song-Ja
    • IMMUNE NETWORK
    • /
    • 제6권4호
    • /
    • pp.204-210
    • /
    • 2006
  • Background: Nitric oxide (NO) in articular chondrocytes regulates dedifferentiation and inflammatory responses by modulating MAP kinases. In this study, we investigated whether the Src kinase in chondrocytes regulates NO-induced dedifferentiation and cyclooxygenase-2 (COX-2) expression. Methods: Primary chondrocytes were treated with various concentrations of SNP for 24 h. The COX-2 and type II collagen expression levels were determined by immunoblot analysis, and prostaglandin $E_2\;(PGE_2)$ was determined by using a $PGE_2$ assay kit. Expression and distribution of p-Caveolin and COX-2 in rabbit articular chondrocytes and cartilage explants were determined by immunohistochemical staining and immunocytochemical staining, respectively. Results: SNP treatment stimulated Src kinase activation in a dose-dependent manner in articular chondrocytes. The Src kinase inhibitors PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine], a significantly blocked SNP-induced p38 kinase and caveolin-1 activation in a dose-dependent manner. Therefore, to determine whether Src kinase activation is associated with dedifferentiation and/or COX-2 expression and $PGE_2$ production. As expected, PP2 potentiated SNP-stimulated dedifferentiation, but completely blocked both COX-2 expression and $PGE_2$ production. And also, levels of p-Caveolin and COX-2 protein expression were increased in SNP-treated primary chondrocytes and osteoarthritic and rheumatoid arthritic cartilage, suggesting that p-Caveolin may playa role in the inflammatory responses of arthritic cartilage. Conclusion: Our previously studies indicated that NO caused dedifferentiation and COX-2 expression is regulated by p38 kinase through caveolin-1 (1). Therefore, our results collectively suggest that Src kinase regulates NO-induced dedifferentiation and COX-2 expression in chondrocytes via p38 kinase in association with caveolin-1.

FGF-2 inhibits TNF-α mediated apoptosis through up-regulation of Bcl2-A1 and Bcl-xL in ATDC5 cells

  • Kim, Hey-Ryun;Heo, Youn-Moo;Jeong, Kyoung-Il;Kim, Yong-Min;Jang, Hae-Lan;Lee, Kwang-Yeol;Yeo, Chang-Yeol;Kim, Sung-Hoon;Lee, Hak-Kyo;Kim, Seung-Ryul;Kim, Eung-Gook;Choi, Joong-Kook
    • BMB Reports
    • /
    • 제45권5호
    • /
    • pp.287-292
    • /
    • 2012
  • FGF-2 is involved in cell survival, proliferation, apoptosis, and angiogenesis in a wide variety of cells. FRGRs, PI3K and MAP kinases are well known mediators of FGF signaling. Despite its known roles during many developmental processes, including osteogenesis, there are few known targets of FGF-2. In the present study, we identified Bcl2-A1 and Bcl-xL as two prominent targets involved in promoting cell survival. Pretreatment of ATDC5 cells with FGF-2 increased cell survival, while siRNAs specific for Bcl2-A1 and Bcl-xL compromised the anti-apoptotic effect of FGF-2, sensitized the cells to apoptosis triggered by TNF-${\alpha}$. Chemical inhibition of FGFR, NFkB, and PI3K activity by PD173074, pyrrolidine dithiocarbamate, and LY294002 respectively abrogated the FGF-2-mediated induction of Bcl2-A1 and Bcl-xL expression. Taken together, our data demonstrate that a subset of Bcl2 family proteins are the targets of FGF-2 signaling that promotes the survival of ATDC5 cells.

A Novel MAP Kinase Gene in Cotton (Gossypium hirsutum L.), GhMAPK, is Involved in Response to Diverse Environmental Stresses

  • Wang, Meimei;Zhang, Ying;Wang, Jian;Wu, Xiaoliang;Guo, Xingqi
    • BMB Reports
    • /
    • 제40권3호
    • /
    • pp.325-332
    • /
    • 2007
  • The mitogen-activated protein kinase (MAPK) cascade is one of the major and evolutionally conserved signaling pathways and plays pivotal role in the regulation of stress and developmental signals in plants. Here, a novel gene, termed Gossypium hirsutum MAPK (GhMAPK), was isolated from cotton. The full-length cDNA of GhMAPK encodes for a 372 amino acid protein that contains all 11 of the MAPK conserved subdomains and the phosphorylationactivation motif, TEY. Amino acid sequence alignment revealed that GhMAPK shared high identity with group-C MAPK in plants and showed 83~89% similarities with MAPKs from Arabidopsis, apricot, pea, petunia, and tobacco. Southern blot analysis indicated that the GhMAPK belonged to a multygene family in cotton. Two introns were found within the region of genomic sequence. Northern blot analysis revealed that the transcripts of GhMAPK accumulated markedly when the cotton seedlings were subjected to various abiotic stimuli such as wounding, cold (4$^{\circ}C$), or salinity stress; Furthermore, GhMAPK was upregulated by the exogenous signaling molecules, such as salicylic acid (SA) and hydrogen peroxide ($H_2O_2C$), as well as pathogen attacks. These results indicate that the GhMAPK, which has a high degree of identity with group-C plant MAPKs, may also play an important role in response to environmental stresses.

Anti-Inflammatory Effect of Mangostenone F in Lipopolysaccharide-Stimulated RAW264.7 Macrophages by Suppressing NF-κB and MAPK Activation

  • Cho, Byoung Ok;Ryu, Hyung Won;So, Yangkang;Lee, Chang Wook;Jin, Chang Hyun;Yook, Hong Sun;Jeong, Yong Wook;Park, Jong Chun;Jeong, Il Yun
    • Biomolecules & Therapeutics
    • /
    • 제22권4호
    • /
    • pp.288-294
    • /
    • 2014
  • Mangostenone F (MF) is a natural xanthone isolated from Garcinia mangostana. However, little is known about the biological activities of MF. This study was designed to investigate the anti-inflammatory effect and underlying molecular mechanisms of MF in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MF dose-dependently inhibited the production of NO, iNOS, and pro-inflammatory cytokines (TNF-${\alpha}$, IL-6, and IL-$1{\beta}$) in LPS-stimulated RAW264.7 macrophages. Moreover, MF decreased the NF-${\kappa}B$ luciferase activity and NF-${\kappa}B$ DNA binding capacity in LPS-stimulated RAW264.7 macrophages. Furthermore, MF suppressed the NF-${\kappa}B$ activation by inhibiting the degradation of $I{\kappa}B{\alpha}$ and nuclear translocation of p65 subunit of NF-${\kappa}B$. In addition, MF attenuated the AP-1 luciferase activity and phosphorylation of ERK, JNK, and p38 MAP kinases. Taken together, these results suggest that the anti-inflammatory effect of MF is associated with the suppression of NO production and iNOS expression through the down-regulation of NF-${\kappa}B$ activation and MAPK signaling pathway in LPS-stimulated RAW264.7 macrophages.

Galangin Suppresses Pro-Inflammatory Gene Expression in Polyinosinic-Polycytidylic Acid-Stimulated Microglial Cells

  • Choi, Min-Ji;Park, Jin-Sun;Park, Jung-Eun;Kim, Han Su;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • 제25권6호
    • /
    • pp.641-647
    • /
    • 2017
  • Galangin (3,5,7-trihydroxyflavone) is a polyphenolic compound abundant in honey and medicinal herbs, such as Alpinia officinarum. In this study, we investigated the anti-inflammatory effects of galangin under in vitro and in vivo neuroinflammatory conditions caused by polyinosinic-polycytidylic acid (poly(I:C)), a viral mimic dsRNA analog. Galangin suppressed the production of nitric oxide, reactive oxygen species, and pro-inflammatory cytokines in poly(I:C)-stimulated BV2 microglia. On the other hand, galangin enhanced anti-inflammatory interleukin (IL)-10 production. Galangin also suppressed the expression of pro-inflammatory markers in poly(I:C)-injected mouse brains. Further mechanistic studies showed that galangin inhibited poly(I:C)-induced nuclear factor (NF)-${\kappa}B$ activity and phosphorylation of Akt without affecting MAP kinases. Interestingly, galangin increased the expression and transcriptional activity of peroxisome proliferator-activated receptor (PPAR)-${\gamma}$, known to play an anti-inflammatory role. To investigate whether PPAR-${\gamma}$ is involved in the anti-inflammatory function of galangin, BV2 cells were pre-treated with PPAR-${\gamma}$ antagonist before treatment of galangin. We found that PPAR-${\gamma}$ antagonist significantly blocked galangin-mediated upregulation of IL-10 and attenuated the inhibition of tumor necrosis factor (TNF)-${\alpha}$ and IL-6 in poly(I:C)-stimulated microglia. In conclusion, our data suggest that PI3K/Akt, NF-${\kappa}B$, and PPAR-${\gamma}$ play a pivotal role in mediating the anti-inflammatory effects of galangin in poly(I:C)-stimulated microglia.

The Inactivation of ERK1/2, p38 and NF-kB Is Involved in the Down-Regulation of Osteoclastogenesis and Function by A2B Adenosine Receptor Stimulation

  • Kim, Bo Hyun;Oh, Ju Hee;Lee, Na Kyung
    • Molecules and Cells
    • /
    • 제40권10호
    • /
    • pp.752-760
    • /
    • 2017
  • A2B adenosine receptor (A2BAR) is known to be the regulator of bone homeostasis, but its regulatory mechanisms in osteoclast formation are less well-defined. Here, we demonstrate the effect of A2BAR stimulation on osteoclast differentiation and activity by RANKL. A2BAR was expressed in bone marrow-derived monocyte/macrophage (BMM) and RANKL increased A2BAR expression during osteoclastogenesis. A2BAR stimulation with its specific agonist BAY 60-6583 was sufficient to inhibit the activation of ERK1/2, p38 MAP kinases and $NF-{\kappa}B$ by RANKL as well as it abrogated cell-cell fusion in the late stage of osteoclast differentiation. Stimulation of A2BAR suppressed the expression of osteoclast marker genes, such as c-Fos, TRAP, Cathepsin-K and NFATc1, induced by RANKL, and transcriptional activity of NFATc1 was also inhibited by stimulation of A2BAR. A2BAR stimulation caused a notable reduction in the expression of Atp6v0d2 and DC-STAMP related to cell-cell fusion of osteoclasts. Especially, a decrease in bone resorption activity through suppression of actin ring formation by A2BAR stimulation was observed. Taken together, these results suggest that A2BAR stimulation inhibits the activation of ERK1/2, p38 and $NF-{\kappa}B$ by RANKL, which suppresses the induction of osteoclast marker genes, thus contributing to the decrease in osteoclast cell-cell fusion and bone resorption activity.

Involvement of Cytosolic Phospholipase $A_2$ in Nerve Growth Factor-Mediated Neurite Outgrowth of PC12 Cells

  • Choi, Soon-Wook;Yu, Eun-Ah;Lee, Young-Seek;Yoo, Young-Sook
    • BMB Reports
    • /
    • 제33권6호
    • /
    • pp.525-530
    • /
    • 2000
  • The nerve growth factor (NGF) induces neuronal differentiation and neurite outgrowth of PC12 cells, whereas epidermal growth factors (EGF) stimulate growth and proliferation of the cells. In spite of this difference, NGF-or EGF-treated PC12 cells share various properties in cellular-signaling pathways. These include the activation of the phosphoinositide (PI)-3 kinase, 70 kDa S6 kinase, and in the mitogen-activated protein (MAP) kinase pathway, following the binding of these growth factors to intrinsic receptor tyrosine kinases (RTKs). Therefore, many studies have been attempted to access the critical signaling events in determining the differentiation and proliferation of PC12 cells. In this study, we investigated the cytosolic phospholipase $A_2$ ($cPLA_2$) in neurite behavior in order to identify the differences of signaling pathways between the NGF-induced differentiation and the EGF-induced proliferation of PC12 cells. We have showed here that the $cPLA_2$ was translocated from cytosol to membrane only in NGF-treated cells. We also demonstrated that this translocation is associated with NGF-induced activation of phospholipase $C-{\gamma}(PLC-{\gamma})$, which elevates intracellular $Ca^{2+}$ concentration. These results reveal that the translocation of $cPLA_2$ may be a requisite event in the neuronal differentiation of PC12 cells. Various phospholipase inhibitors were used to confirm the importance of these enzymes in the differentiation of PC12 cells. Neomycin B, a PLC inhibitor, dramatically inhibited the neurite outgrowth, and two distinct $PLA_2$ inhibitors, 4-bromophenacyl bromide (BPB) and arachidonyltrifluoro-methyl ketone ($AACOCF_3$) also suppressed the neurite outgrowth of the cells, as well Taken together, these data indicated that $cPLA_2$ is involved in NGF-induced neuronal differentiation and neurite outgrowth of PC12 cells.

  • PDF

CKD-712, (S)-1-(${\alpha}$-naphthylmethyl)-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, Inhibits the NF-${\kappa}B$ Activation and Augments Akt Activation during TLR4 Signaling

  • Lee, Jeong-Gi;Yang, Eun-Jeong;Shin, Jeon-Soo;Kim, Dal-Hyun;Lee, Sung-Sook;Choi, In-Hong
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.420-423
    • /
    • 2011
  • Since CKD-712 has been developed as an anti-inflammatory agent, we examined the effect of CKD-712 during TLR4 signaling. Using HEK293 cells expressing TLR4, CKD-712 was pre-treated 1 hr before LPS stimulation. Activation of NF-${\kappa}B$ was assessed by promoter assay. The activation of ERK, JNK, p38, IRF3 and Akt was measured by western blotting. CKD-712 inhibited the NF-${\kappa}B$ signaling triggered by LPS. The activation of ERK, JNK, p38 or IRF3 was not inhibited by CKD-712. On the contrary the activation of these molecules was augmented slightly. The activation of Akt with stimulation of LPS was also enhanced with CKD-712 pre-treatment at lower concentration, but was inhibited at higher concentration. We suggest that during TLR4 signaling CKD-712 inhibits NF-${\kappa}B$ activation. However, CKD-712 augmented the activation of Akt as well as Map kinases. Therefore, we suggest that CKD-712 might have a role as an immunomodulator.