Inhibitory Effects of Lactobacillus plantarum Lipoteichoic Acid (LTA) on Staphylococcus aureus LTA-Induced Tumor Necrosis Factor-Alpha Production

  • Kim, Han-Geun (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Lee, Seung-Yeon (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Kim, Na-Ra (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Ko, Mi-Yeon (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Lee, Jung-Min (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Yi, Tae-Hoo (Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University) ;
  • Chung, Sung-Kyun (Department of Dental Hygiene, Shinheung College) ;
  • Chung, Dae-Kyun (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University)
  • Published : 2008.06.30

Abstract

Staphylococcus aureus is a common etiologic agent for Gram-positive sepsis, and its lipoteichoic acid (LTA) may be important in causing Gram-positive bacterial septic shock. Here, we demonstrate that highly purified LTA (pLTA) isolated from Lactobacillus plantarum inhibited S. aureus LTA (aLTA)-induced TNF-${\alpha}$ production in THP-1 cells. Whereas pLTA scarcely induced TNF-${\alpha}$ production, aLTA induced excessive TNF-${\alpha}$ production. Interestingly, aLTA-induced TNF-${\alpha}$ production was inhibited by pLTA pretreatment. Compared with pLTA, aLTA induced a strong signal transduction through the MyD88, NF-${\kappa}B$, and MAP kinases. This signaling, however, was reduced by a pLTA pretreatment, and resulted in the inhibition of aLTA-induced TNF-${\alpha}$ production. Whereas dealanylated LTAs, as well as native LTAs, contributed to TNF-${\alpha}$ induction or TNF-${\alpha}$ reduction, deacylated LTAs did not, indicating that the acyl chain of LTA played an important role in the LTA-mediated immune regulation. These results suggest that pLTA may act as an antagonist for aLTA, and that an antagonistic pLTA may be a useful agent for suppressing the septic shock caused by Gram-positive bacteria.

Keywords

References

  1. Altekruse, S. F., M. L. Cohen, and D. L. Swerdlow. 1997. Emerging foodborne diseases. Emerg. Infect. Dis. 3: 285-293 https://doi.org/10.3201/eid0303.970304
  2. Blease, K., Y. Chen, P. G. Hellewell, and A. Burke-Gaffney. 1999. Lipoteichoic acid inhibits lipopolysaccharide-induced adhesion molecule expression and IL-8 release in human lung microvascular endothelial cells. J. Immunol. 163: 6139-6147
  3. Bunnell, E., M. Lynn, K. Habet, A. Neumann, C. A. Perdomo, L. T. Friedhoff, S. L. Rogers, and J. E. Parrillo. 2000. A lipid A analog, E5531, blocks the endotoxin response in human volunteers with experimental endotoxemia. Crit. Care Med. 28: 2713- 2720 https://doi.org/10.1097/00003246-200008000-00005
  4. Casey, A. L., P. A. Lambert, and T. S. J. Elliott. 2007. Staphylococci. Int. J. Antimicrob. Agents 29: S23-S32
  5. Cook, D. N., D. S. Pisetsky, and D. A. Schwartz. 2004. Tolllike receptors in the pathogenesis of human disease. Nat. Immunol. 5: 975-979 https://doi.org/10.1038/ni1116
  6. De Kimpe, S. J., M. Kengatharan, C. Thiemermann, and J. R. Vane. 1995. The cell wall components peptidoglycan and lipoteichoic acid from Staphylococcus aureus act in synergy to cause shock and multiple organ failure. Proc. Natl. Acad. Sci. USA 92: 10359-10363
  7. Ellingsen, E., S. Morath, T. Flo, A. Schromm, T. Hartung, C. Thiemermann, et al. 2002. Induction of cytokine production in human T cells and monocytes by highly purified lipoteichoic acid: Involvement of Toll-like receptors and CD14. Med. Sci. Monit. 8: BR149-BR156
  8. Ha, C. G., J. K. Cho, C. H. Lee, Y. G. Chai, Y. A. Ha, and S. H. Shin. 2006. Cholesterol lowering effect of Lactobacillus plantarum isolated from human feces. J. Microbiol. Biotechnol. 16: 1201- 1209
  9. Han, S. H., J. H. Kim, M. Martin, S. M. Michalek, and M. H. Nahm. 2003. Pneumococcal lipoteichoic acid (LTA) is not as potent as Staphylococcal LTA in stimulating Toll-like receptor 2. Infect. Immun. 71: 5541-5548 https://doi.org/10.1128/IAI.71.10.5541-5548.2003
  10. Heo, S. T., K. R. Peck, S. Y. Ryu, K. T. Kwon, K. S. Ko, W. S. Oh, N. Y. Lee, and J. H. Song. 2007. Analysis of methicillin resistance among Staphylococcus aureus blood isolates in an emergency department. J. Korean Med. Sci. 22: 682-686 https://doi.org/10.3346/jkms.2007.22.4.682
  11. Hur, H. J., K. W. Lee, H. Y. Kim, D. K. Chung, and H. J. Lee. 2006. In vitro immunopotentiating activites of cellular fractions of lactic acid bacteria isolated from kimchi and Bifidobacteria. J. Microbiol. Biotechnol. 16: 661-666
  12. Jacinto, R., T. Hartung, C. McCall, and L. Li. 2002. Lipopolysaccharide- and lipoteichoic acid-induced tolerance and cross-tolerance: Distinct alterations in IL-1 receptor-associated kinase. J. Immunol. 168: 6136-6141 https://doi.org/10.4049/jimmunol.168.12.6136
  13. Kim, J. Y., H. J. Woo, K. H. Kim, E. R. Kim, H. K. Jung, H. N. Juhn, and H. J. Lee. 2002. Antitumor activity of Lactobacillus plantarum cytoplasm on teratocarcinoma-bearing mice. J. Microbiol. Biotechnol. 12: 998-1001
  14. Lee, H. M. and Y. H. Lee. 2006. Isolation of Lactobacillus plantarum from kimchi and its inhibitory activity on the adherence and growth of Helicobacter pylori. J. Microbiol. Biotechnol. 16: 1513-1517
  15. Lee, Y. D., B. Y. Moon, J. H. Park, H. I. Chang, and W. J. Kim. 2007. Expression of enterotoxin genes in Staphylococcus aureus isolates based on mRNA analysis. J. Microbiol. Biotechnol. 17: 461-467
  16. Lehner, M. D., S. Morath, K. S. Michelsen, R. R. Schumann, and T. Hartung. 2001. Induction of cross-tolerance by lipopolysaccharide and highly purified lipoteichoic acid via different Toll-like receptors independent of paracrine mediators. J. Immunol. 166: 5161-5167 https://doi.org/10.4049/jimmunol.166.8.5161
  17. Livermore, D. M. 2007. Introduction: The challenge of multiresistance. Int. J. Antimicrob. Agents 29: S1-S7 https://doi.org/10.1016/j.ijantimicag.2006.11.001
  18. Lotz, S., E. Aga, I. Wilde, G. V. Zandbergen, T. Hartung, W. Solbach, and T. Laskay. 2004. Highly purified lipoteichoic acid activates neutrophil granulocytes and delays their spontaneous apoptosis via CD14 and TLR2. J. Leukoc. Biol. 75: 467-477 https://doi.org/10.1189/jlb.0803360
  19. Medvedev, A. E., K. M. Kopydlowski, and S. N. Vogel. 2000. Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: Dysregulation of cytokine, chemokine, and Toll-like receptor 2 and 4 gene expression. J. Immunol. 164: 5564-5574 https://doi.org/10.4049/jimmunol.164.11.5564
  20. Morath, S., A. Geyer, and T. Hartung. 2001. Structure-function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus. J. Exp. Med. 193: 393-397 https://doi.org/10.1084/jem.193.3.393
  21. Morath, S., A. Stadelmaier, A. Geyer, R. R. Schmidt, and T. Hartung. 2002. Synthetic lipoteichoic acid from Staphylococcus aureus is a potent stimulus of cytokine release. J. Exp. Med. 195: 1635-1640 https://doi.org/10.1084/jem.20020322
  22. Romagne, F. 2007. Current and future drugs targeting one class of innate immunity receptors: The Toll-like receptors. Drug Discov. Today 12: 80-87 https://doi.org/10.1016/j.drudis.2006.11.007
  23. Someya, K., Y. Tsutomi, T. Soga, and K. Akahane. 1996. A lipid A analog inhibits LPS-induced cytokine expression and improves survival in endotoxemic mice. Immunopharmacol. Immunotoxicol. 18: 477-495 https://doi.org/10.3109/08923979609052749