DOI QR코드

DOI QR Code

Anti-Inflammatory Effect of Mangostenone F in Lipopolysaccharide-Stimulated RAW264.7 Macrophages by Suppressing NF-κB and MAPK Activation

  • Cho, Byoung Ok (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Ryu, Hyung Won (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • So, Yangkang (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Lee, Chang Wook (Department of Food Science and Human Nutrition, Chungnam National University) ;
  • Jin, Chang Hyun (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Yook, Hong Sun (Department of Food Science and Human Nutrition, Chungnam National University) ;
  • Jeong, Yong Wook (Department of Microbiology, College of Medicine, Seonam University) ;
  • Park, Jong Chun (Department of Microbiology, College of Medicine, Seonam University) ;
  • Jeong, Il Yun (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • Received : 2014.05.08
  • Accepted : 2014.06.10
  • Published : 2014.07.31

Abstract

Mangostenone F (MF) is a natural xanthone isolated from Garcinia mangostana. However, little is known about the biological activities of MF. This study was designed to investigate the anti-inflammatory effect and underlying molecular mechanisms of MF in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MF dose-dependently inhibited the production of NO, iNOS, and pro-inflammatory cytokines (TNF-${\alpha}$, IL-6, and IL-$1{\beta}$) in LPS-stimulated RAW264.7 macrophages. Moreover, MF decreased the NF-${\kappa}B$ luciferase activity and NF-${\kappa}B$ DNA binding capacity in LPS-stimulated RAW264.7 macrophages. Furthermore, MF suppressed the NF-${\kappa}B$ activation by inhibiting the degradation of $I{\kappa}B{\alpha}$ and nuclear translocation of p65 subunit of NF-${\kappa}B$. In addition, MF attenuated the AP-1 luciferase activity and phosphorylation of ERK, JNK, and p38 MAP kinases. Taken together, these results suggest that the anti-inflammatory effect of MF is associated with the suppression of NO production and iNOS expression through the down-regulation of NF-${\kappa}B$ activation and MAPK signaling pathway in LPS-stimulated RAW264.7 macrophages.

Keywords

References

  1. Choi, W. S., Shin, P. G., Lee, J. H. and Kim, G. D. (2012) The regulatory effect of veratric acid on NO production in LPS-stimulated RAW264.7 macrophage cells. Cell. Immunol. 280, 164-170. https://doi.org/10.1016/j.cellimm.2012.12.007
  2. Ci, X., Ren, R., Xu, K., Li, H., Yu, Q., Song, Y., Wang, D., Li, R. and Deng, X. (2010) Schisantherin A exhibits anti-inflammatory properties by down-regulating NF-$\kappa{B}$ and MAPK signaling pathways in lipopolysaccharide-treated RAW 264.7 cells. Inflammation 33, 126-136. https://doi.org/10.1007/s10753-009-9166-7
  3. Fengyang, L., Yunhe, F., Bo, L., Zhicheng, L., Depeng, L., Dejie, L., Wen, Z., Yongguo, C., Naisheng, Z., Xichen, Z. and Zhengtao, Y. (2012) Stevioside suppressed inflammatory cytokine secretion by downregulation of NF-$\kappa{B}$ and MAPK signaling pathways in LPSstimulated RAW264.7 cells. Inflammation 35, 1669-1675. https://doi.org/10.1007/s10753-012-9483-0
  4. Gao, Y., Jiang, W., Dong, C., Li, C., Fu, X., Min, L., Tian, J., Jin, H. and Shen, J. (2012) Anti-infl ammatory effects of sophocarpine in LPS-induced RAW 264.7 cells via NF-$\kappa{B}$ and MAPKs signaling pathways. Toxicol. In Vitro 26, 1-6. https://doi.org/10.1016/j.tiv.2011.09.019
  5. Han, J. M., Jin, Y. Y., Kim, H. Y., Park, K. H., Lee, W. S. and Jeong, T. S. (2010) Lavandulyl flavonoids from Sophora flavescens suppress lipopolysaccharide-induced activation of nuclear factor-$\kappa{B}$ and mitogen-activated protein kinases in RAW264.7 cells. Biol. Pharm. Bull. 33, 1019-1023. https://doi.org/10.1248/bpb.33.1019
  6. Han, Y., Jung, H. W., Lee, J. Y., Kim, J. S., Kang, S. S., Kim, Y. S. and Park, Y. K. (2012) 2,5-Dihydroxyacetophenone isolated from Rehmanniae radix preparata inhibits inflammatory responses in lipopolysaccharide-stimulated RAW264.7 macrophages. J. Med. Food 15, 505-510. https://doi.org/10.1089/jmf.2011.1940
  7. Kawai, T. and Akira, S. (2006) TLR signaling. Cell Death Differ. 13, 816-825. https://doi.org/10.1038/sj.cdd.4401850
  8. Lee, J., Tae, N., Lee, J. J., Kim, T. and Lee, J. H. (2010) Eupatolide inhibits lipopolysaccharide-induced COX-2 and iNOS expression in RAW264.7 cells by inducing proteasomal degradation of TRAF6. Eur. J. Pharmacol. 636, 173-180. https://doi.org/10.1016/j.ejphar.2010.03.021
  9. Lee, J. W., Bae, C. J., Choi, Y. J., Kim, S. I., Kim, N. H., Lee, H. J., Kim, S. S., Kwon, Y. S. and Chun, W. (2012) 3,4,5-Trihydroxycinnamic acid inhibits LPS-induced iNOS expression by suppressing NF-$\kappa{B}$ activation in BV2 microglial cells. Korean J. Physiol. Pharmacol. 16, 107-112. https://doi.org/10.4196/kjpp.2012.16.2.107
  10. Meng, X., Kawahara, K., Matsushita, K., Nawa, Y., Shrestha, B., Kikuchi, K., Sameshima, H., Hashiguchi, T. and Maruyama, I. (2009) Attenuation of LPS-induced iNOS expression by 1,5-anhydro-Dfructose. Biochem. Biophys. Res. Commun. 387, 42-46. https://doi.org/10.1016/j.bbrc.2009.06.108
  11. Pan, M. H., Yang, J. R., Tsai, M. L., Sang, S. and Ho, C. T. (2009) Anti-inflammatory effect of Momordica grosvenori Swingle extract through suppressed LPS-induced upregulation of iNOS and COX- 2 in murine macrophages. J. Funct. Foods 1, 145-152. https://doi.org/10.1016/j.jff.2009.01.003
  12. Pansanit, A., Park, E. J., Kondratyuk, T. P., Pezzuto, J. M., Lirdprapamongkol, K. and Kittakoop, P. (2013) Vermelhotin, an antiinflammatory agent, suppresses nitric oxide production in RAW 264.7 cells via p38 inhibition. J. Nat. Prod. 76, 1824-1827. https://doi.org/10.1021/np400565e
  13. Park, H. Y., Kim, G. Y., Hyun, J. W., Hwang, H. J., Kim, N. D., Kim, B. W. and Choi, Y. H. (2012) 7,8-Dihydroxyfl avone exhibits antiinflammatory properties by downregulating the NF-$\kappa{B}$ and MAPK signaling pathways in lipopolysaccharide-treated RAW264.7 cells. Int. J. Mol. Med. 29, 1146-1152.
  14. Pedraza-Chaverri, J., Cardenas-Rodriguez, N., Orozco-Ibarra, M. and Perez-Rojas, J. M. (2008) Medicinal properties of mangosteen (Garcinia mangostana). Food chem. Toxicol. 46, 3227-3239. https://doi.org/10.1016/j.fct.2008.07.024
  15. Reddy, D. B. and Reddanna, P. (2009) Chebulagic acid (CA) attenuates LPS-induced inflammation by suppressing NF-$\kappa{B}$ and MAPK activation in RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 381, 112-117. https://doi.org/10.1016/j.bbrc.2009.02.022
  16. Ryu, H. W., Cho, J. K., Curtis-Long, M. J., Yuk, H. J., Kim, Y. S., Jung, S., Kim, Y. S., Lee, B. W. and Park, K. H. (2011) $\alpha$-Glucosidase inhibition and antihyperglycemic activity of prenylated xanthones from Garcinia mangostana. Phytochemistry 72, 2148-2154. https://doi.org/10.1016/j.phytochem.2011.08.007
  17. Ryu, H. W., Curtis-Long, M. J., Jung, S., Jin, Y. M., Cho, J. K., Ryu, Y. B., Lee, W. S. and Park, K. H. (2010) Xanthones with neuraminidase inhibitory activity from the seedcases of Garcinia mangostana. Bioorg. Med. Chem. 18, 6258-6264. https://doi.org/10.1016/j.bmc.2010.07.033
  18. Ryu, H. W., Jeong, S. H., Curtis-Long, M. J., Jung, S., Lee, J. W., Woo, H. S., Cho, J. K. and Park, K. H. (2012) Inhibition effects of mangosenone F from Garcinia mangostana on melanin formation in B16F10 cells. J. Agric. Food Chem. 60, 8372-8378. https://doi.org/10.1021/jf3015987
  19. Shin, J. S., Park, Y. M., Choi, J. H., Park, H. J., Shin, M. C., Lee, Y. S. and Lee, K. T. (2010) Sulfuretin isolated from heartwood of Rhus vernicifl ua inhibits LPS-induced inducible nitric oxide synthase, cyclooxygenase-2, and pro-inflammatory cytokines expression via the down-regulation of NF-$\kappa{B}$ in RAW 264.7 murine macrophage cells. Int. Immunopharmacol. 10, 943-950. https://doi.org/10.1016/j.intimp.2010.05.007
  20. Su, Y. W., Chiou, W. F., Chao, S. H., Lee, M. H., Chen, C. C. and Tsai, Y. C. (2011) Ligustilide prevents LPS-induced iNOS expression in RAW 264.7 macrophages by preventing ROS production and down-regulating the MAPK, NF-$\kappa{B}$ and AP-1 signaling pathways. Int. Immunopharmacol. 11, 1166-1172. https://doi.org/10.1016/j.intimp.2011.03.014
  21. Suksamrarn, S., Suwannapoch, N., Ratananukul, P., Aroonlerk, N. and Suksamrarn, A. (2002) Xanthones from the green fruit hulls of Garcinia mangostana. J. Nat. Prod. 65, 761-763. https://doi.org/10.1021/np010566g
  22. Wang, Z., Jiang, W., Zhang, Z., Qian, M. and Du, B. (2012) Nitidine chloride inhibits LPS-induced inflammatory cytokines production via MAPK and NF-kappaB pathway in RAW 264.7 cells. J. Ethnopharmacol. 144, 145-150. https://doi.org/10.1016/j.jep.2012.08.041
  23. Wun, Z. Y., Lin, C. F., Huang, W. C., Huang, Y. L., Xu, P. Y., Chang, W. T., Wu, S. J. and Liou, C. J. (2013) Anti-inflammatory effect of sophorafl avanone G isolated from Sophora flavescens in lipopolysaccharide-stimulated mouse macrophages. Food Chem. Toxicol. 62, 255-261. https://doi.org/10.1016/j.fct.2013.08.072

Cited by

  1. The Anti-inflammatory Effect of Gnaphalium affine Through Inhibition of NF-κB and MAPK in Lipopolysaccharide-Stimulated RAW264.7 Cells and Analysis of Its Phytochemical Components vol.74, pp.3, 2016, https://doi.org/10.1007/s12013-016-0744-7
  2. MAPK/AP-1-Targeted Anti-Inflammatory Activities of Xanthium strumarium vol.44, pp.06, 2016, https://doi.org/10.1142/S0192415X16500622
  3. Nauclea officinalis inhibits inflammation in LPS-mediated RAW 264.7 macrophages by suppressing the NF-κB signaling pathway vol.183, 2016, https://doi.org/10.1016/j.jep.2016.01.018
  4. Review of Garcinia mangostana and its Xanthones in Metabolic Syndrome and Related Complications vol.31, pp.8, 2017, https://doi.org/10.1002/ptr.5862
  5. In Vitroantioxidative and anti-inflammatory activities of the ethanol extract of eggplant (Solanum melongena)stalks in macrophage RAW 264.7 cells vol.27, pp.6, 2016, https://doi.org/10.1080/09540105.2016.1150427
  6. KH-type splicing regulatory protein mediate inflammatory response in gastric epithelial cells induced by lipopolysaccharide vol.41, pp.8, 2017, https://doi.org/10.1002/cbin.10804
  7. Corydalis bungeana Turcz. attenuates LPS-induced inflammatory responses via the suppression of NF-κB signaling pathway in vitro and in vivo vol.194, 2016, https://doi.org/10.1016/j.jep.2016.09.013
  8. Synergistic Anti-inflammatory Effect of Rosmarinic Acid and Luteolin in Lipopolysaccharide-Stimulated RAW264.7 Macrophage Cells vol.47, pp.1, 2015, https://doi.org/10.9721/KJFST.2015.47.1.119
  9. The constituent, anti-inflammation, and human neutrophil elastase inhibitory activity of Gnaphalium affine vol.27, 2016, https://doi.org/10.1016/j.jff.2016.10.018
  10. Pyrrole-Derivative of Chalcone, (E)-3-Phenyl-1-(2-Pyrrolyl)-2-Propenone, Inhibits Inflammatory Responses via Inhibition of Src, Syk, and TAK1 Kinase Activities vol.24, pp.6, 2016, https://doi.org/10.4062/biomolther.2016.027
  11. Anti-inflammatory sesquiterpenoids from the Traditional Chinese Medicine Salvia plebeia : Regulates pro-inflammatory mediators through inhibition of NF-κB and Erk1/2 signaling pathways in LPS-induced Raw264.7 cells vol.210, 2018, https://doi.org/10.1016/j.jep.2017.08.034
  12. Regulatory effects and molecular mechanism of Trigonostemon reidioides on lipopolysaccharide-induced inflammatory responses in RAW264.7 cells vol.16, pp.4, 2017, https://doi.org/10.3892/mmr.2017.7297
  13. B, MAPK, and Akt Pathways in LPS-Stimulated RAW 264.7 Macrophages vol.2018, pp.1466-1861, 2018, https://doi.org/10.1155/2018/4675204
  14. Mangosteen Extract Shows a Potent Insulin Sensitizing Effect in Obese Female Patients: A Prospective Randomized Controlled Pilot Study vol.10, pp.5, 2018, https://doi.org/10.3390/nu10050586
  15. RAW 264.7을 이용한 정금나무 열매(Vaccinum oldhami fruit)의 항염증 효과 vol.27, pp.4, 2014, https://doi.org/10.5352/jls.2017.27.4.417
  16. RAW 264.7 큰포식세포에서 상백피 및 상지 에탄올 추출물의 항염증 활성 비교 vol.49, pp.3, 2017, https://doi.org/10.9721/kjfst.2017.49.3.343
  17. Topical application of Hydroxysafflor Yellow A accelerates the wound healing in streptozotocin induced T1DM rats vol.823, pp.None, 2014, https://doi.org/10.1016/j.ejphar.2018.01.018
  18. 가미귀비탕 탕액과 시판제제의 성분 및 생리활성 비교 vol.32, pp.5, 2014, https://doi.org/10.15188/kjopp.2018.10.32.5.333
  19. The Therapeutic Potential of Mangosteen Pericarp as an Adjunctive Therapy for Bipolar Disorder and Schizophrenia vol.10, pp.None, 2014, https://doi.org/10.3389/fpsyt.2019.00115
  20. Treatment with Peanut Sprout Root Extract Alleviates Inflammation in a Lipopolysaccharide-Stimulated Mouse Macrophage Cell Line by Inhibiting the MAPK Signaling Pathway vol.20, pp.23, 2014, https://doi.org/10.3390/ijms20235907
  21. Chemical Transformation of Astaxanthin from Haematococcus pluvialis Improves Its Antioxidative and Anti-inflammatory Activities vol.5, pp.30, 2020, https://doi.org/10.1021/acsomega.0c02479
  22. Lauric acid ameliorates lipopolysaccharide (LPS)-induced liver inflammation by mediating TLR4/MyD88 pathway in Sprague Dawley (SD) rats vol.265, pp.None, 2021, https://doi.org/10.1016/j.lfs.2020.118750
  23. Calamagrostis arundinacea (실새풀) 추출물의 항노화 및 항염증 활성 vol.31, pp.3, 2021, https://doi.org/10.5352/jls.2021.31.3.298
  24. Effects of molecular weight of chitosan on anti-inflammatory activity and modulation of intestinal microflora in an ulcerative colitis model vol.193, pp.no.pb, 2014, https://doi.org/10.1016/j.ijbiomac.2021.11.024