• Title/Summary/Keyword: M cells

Search Result 13,763, Processing Time 0.059 seconds

Effect of Verapamil on Cellular Uptake of Tc-99m MIBI and Tetrofosmin on Several Cancer Cells (수종의 암세포에서 Verapamil이 Tc-99m MIBI와 Tetrofosmin의 섭취에 미치는 영향)

  • Kim, Dae-Hyun;Yoo, Jung-Ah;Suh, Myung-Rang;Bae, Jin-Ho;Jeong, Shin-Young;Ahn, Byeong-Cheol;Lee, Kyu-Bo;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.85-98
    • /
    • 2004
  • Purpose: Cellular uptake of $^{99}mTc$-sestamibi (MIBI) and $^{99}mTc$-tetrofosmin (TF) is low in cancer cells expressing multidrug resistance(MDR) by p-glycoprotein(Pgp) or multidrug related protein(MRP). Verapamil is known to increase cellular uptake of MIBI in MDR cancer cells, but is recently reported to have different effects on tracer uptake in certain cancer cells. This study was prepared to evaluate effects of verapamil on cellular uptake of MIBI and TF in several cancer cells. Materials and Methods: Celluar uptakes of Tc-99m MIBI and TF were measured in erythroleukermia K562 cell, breast cancer MCF7 cell, and human ovarian cancer SK-OV-3 cells, and data were compared with those of doxorubicin-resistant K562(Ad) cells. RT-PCR and Western blot analysis were used for the detection of mdr1 mRNA and Pgp expression, and to observe changes in isotypes of PKC enzyme. Effects of verapamil on MIBI and TF uptake were evaluated at different concentrations upto $200{\mu}M\;at\;1{\times}10^6\;cells/ml\;at\;37^{\circ}C$. Radioactivity in supernatant and pellet was measured with gamma counter to calculate cellular uptake ratio. Toxicity of verapamil was measured with MTT assay. Results: Cellular uptakes of MIBI and TF were increased by time in four cancer cells studied. Co-incubation with verapamil resulted in an increase in uptake of MIBI and TF in K562(Adr) cell at a concentration of $100{\mu}M$ and the maximal increase at $50{\mu}M$ was 10-times to baseline. In contrast, uptakes of MIBI and TF in K562, MCF7, SK-OV3 cells were decreased with verapamil treatment at a concentration over $1{\mu}M$. With a concentration of $200{\mu}M$ verapamil, MIBI and TF uptakes un K562 cells were decreased to 1.5 % and 2.7% of those without verapamil, respectively. Cellular uptakes of MIBI and TF in MCF7 and SK-OV-3 cells were not changed with $10{\mu}M$, but were also decreased with verapamil higher than $10{\mu}M$, resulting 40% and 5% of baseline at $50{\mu}M$. MTT assay of four cells revealed that K562, MCF7, SK-OV3 were not damaged with verapamil at $200{\mu}M$. Conclusion: Although verapamil increases uptake of MIBI and TF in MDR cancer cells, cellular uptakes were further decreased with verapamil in certain cancer cells, which is not related to cytotoxicity of drug. These results suggest that cellular uptakes of both tracers might differ among different cells, and interpretation of changes in tracer uptake with verapamil in vitro should be different when different cell lines are used.

Human Embryonic Stem Cells Experience a Typical Apoptotic Process upon Oxidative Stress

  • Lee, Gun-Soup;Lee, Young-Jae;Kim, Eun-Young;Park, Se-Pill;Lim, Jin-Ho
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.97-97
    • /
    • 2003
  • Embryonic stem (ES) cells, derived from preimplantation embryos, are able to differentiate into various types of cells consisting the whole body, or pluripotency. In addition to the plasticity, ES cells are expected to be different from terminally differentiated cells in very many ways, such as patterns of gene expressions, ability and response of the cells in confronting environmental stimulations, metabolism, and growth rate. As a model system to differentiate these two types of cells, human ES (hES, MB03) cells and terminally differentiated cells (HeLa), we examined the ability of these two types of cells in confronting a severe oxidative insult, that is $H_2 O_2$. Ratio of dying cells as determined by the relative amount of dye neutral red entrapped within the cells after the exposures. Cell death rates were not significantly different when either MB03 or HeLa were exposed up to 0.4 mM $H_2 O_2$. However, relative amount of dye entrapped within the cells sharply decreased down to 0.12% in HeLa cells when the cells were exposed to 0.8 mM $H_2 O_2$, while it was approximately 54% in MB03. Pretreatment of cells with BSO (GSH chelator) and measurement of GSH content results suggest that cellular GSH is the major defensive mechanism of hES cells. Induction of apoptosis in hES cell was confirmed by DNA laddering, induction of Bax, and chromatin condensation. In summary, hES cells 1) are extremely resistant to oxidative stress, 2) utilize GSH as a major defensive mechanism. and 3) experience apoptosis upon exposure to oxidative stress.

  • PDF

Glutathione is the Major Defensive Mechanism against Oxidative Stress in Human Embryonic Stem Cell

  • 이건섭;이영재;김은영;박세필;임진호
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.78-78
    • /
    • 2003
  • Embryonic stem (ES) cells, derived from preimplantation embryo, are able to differentiate into various types of cells consisting the whole body, or pluripotency. In contrast, terminally differentiated cells do not usually alter their nature but frequently die or transform if they are exposed to inappropriate external stimulations. In addition to the plasticity, ES cells are expected to be different from terminally differentiated cells in very many ways, such as patterns of gene expressions, ability and response of the cells in confronting environmental stimulations, metabolism, and growth rate. As a model system to differentiate these two types of cells, human ES cells (MB03) and terminally differentiated cells (HeLa), we examined the ability of these two types of cells in confronting a severe oxidative insult, that is $H_2O$$_2$. Approximately 1$\times$10$^4$ cells were plated in 96 well plate and serum starved for overnight. The conditioned cells were exposed to a various concentration of $H_2O$$_2$ fur 24 hrs and loaded with neutral red (50$\mu\textrm{g}$/ml) for 4 hrs, washed with PBS for 2 min three times, and entrapped dye was dissolved out using acetic ethanol. Cytotoxicity was determined by reading the amount of dye in the medium using microplate reader. equipped with 575 nm filter. Relative amount of the dye entrapped within MB03 or HeLa were not significantly different when cells were exposed up to 0.4 mM $H_2O$$_2$. However, this sharply decreased down to 0.12% in HeLa cells when the cells were exposed to 0.8 mM $H_2O$$_2$, while it was approximately 54% in MB03 suggesting that this concentration of $H_2O$$_2$ is the defensive threshold for HeLa cells. The resistance to oxidative stimulation reversed, however, when cells were co-treated with BSO (L-buthionine- 〔S, R〕-sulfoximine) which chelates intracellular GSH. This result suggests that cellular GSH is the major defensive mechanism of human ES cells. Induction of enzymes involved in GSH metabolism and type of cell death is currently being studied.

  • PDF

The Increases of Proenkephalin A mRNA Levels and the Secretion of $[Met^{5}]-Enkephalin$ Induced by Long-term Stimulation with Nicotine are Mediated by a Lipoxygenase Pathway in Bovine Adrenal Medullary Chromaffin Cells (소 부신수실 크롬친화성 세포에서 Nicotine의 장기간 자극으로 유발된 Proenkephalin A mRNA의 증가 및 $[Met^{5}]-enkephalin$의 분비 증가가 Lipoxygenase 경로에 의해 매개됨)

  • Suh, Hong-Won;Kim, Yung-Hi
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.2
    • /
    • pp.237-244
    • /
    • 1993
  • The effect of nicotine on the secretion of $[Met^{5}]-enkephalin$ (ME) in addition to proenkephalin A (proENK) mRNA levels and effects of indomethacin, nordihydroguaiaretic acid (NDGA), and captopril on nicotine-induced responses were studied in bovine adrenal medullary chromaffrin (BAMC) cells. Long-term exposure of BAMC cells to nicotine at a concentration of $10{\mu}M$ significantly increased proENK mRNA level and the secretion of ME into the medium. Treatment of BAMC cells with NDGA (a lipoxygenase inhibitor, $10{\mu}M$), indomethacin (a cycloooxygenase inhibitor) or captopril (an angiotensin converting enzyme inhibitor) alone did not affect ME secretion and proENK mRNA levels. The pretreatment of BAMC cells with NDGA inhibited the increased ME secretion and proENK mRNA level induced by nicotine. However, indomethacin and captopril did not affect nicotine-induced responses. Our results indicate that neuronal regulations of ME secretion and proENK mRNA level induced by nicotine in BAMC cells are in part mediated by a lipoxygenase-but not cyclooxygenase-and endogenous renin-angiotensin pathway.

  • PDF

EFFECT OF DEXAMETHASONE CONCENTRATIONS ON OSTEOGENIC ACTIVITY OF CULTURED HUMAN PERIOSTEAL-DERIVED CELLS (배양된 인간 골막기원세포의 조골활성에 대한 덱사메타손 농도의 효과)

  • Kim, Jong-Ryoul;Park, Bong-Wook;Lee, Chang-Il;Hah, Young-Sool;Kim, Deok-Ryong;Cho, Yeong-Cheol;Sung, Iel-Yong;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.4
    • /
    • pp.287-293
    • /
    • 2009
  • Long-term treatment with glucocorticoid leads to the development of osteoporosis and osteonecrosis. In contrast to the marked inhibitory effect of pharmacological doses of glucocorticoids on bone formation, the relationship between physiological concentrations of glucocorticoids and osteoprogenitor cell proliferation and phenotypes has not been elucidated yet. In addition, the effects of dexamethasone treatment on the proliferation and osteoblastic differentiation of osteoprogenitor cells are also controversial. The purpose of this study was to examine the effects of dexamethasone on the proliferation and osteoblastic differentiation of periosteal-derived cells. Periosteal-derived cells were obtained from mandibular periosteums and introduced into the cell culture. After passage 3, the cells were further cultured for 21 days in the osteogenic induction medium with different dexamethasone concentrations of 0, 10, and 100 nM. The proliferation and osteoblastic phenotypes of periosteal-derived cells were promoted in dexamethasone-treated cells than in untreated cells. Among the dexamethasone-treated cells, cell proliferation was slightly greater in 10 nM dexamethasone-treated cells than in 100 nM dexamethasone-treated cells. Histochemical staining and the bioactivity of alkaline phosphatase (ALP) were higher in 100 nM dexamethasone-treated cells than in 10 nM dexamethasone-treated cells. Similarly, von Kossa-positive mineralization nodules and calcium content were also more evident in 100 nM dexamethasone-treated cells than in 10 nM dexamethasone-treated cells. These results suggest that dexamethasone enhances the in vitro osteoblastic differentiation of periosteal-derived cells. The present study also demonstrates that higher dexamethasone concentrations reduce the in vitro proliferation of periosteal-derived cells.

Establishment of Human Embryonic Stem Cells using Mouse Embryonic Fibroblasts and Human Fetal Fibroblasts as Feeder Cells (인간태아 섬유아세포와 생쥐배아 섬유아세포를 기저세포로 활용한 인간 배아줄기세포의 확립)

  • Cho, Hye Won;Ko, Kyoung Rae;Kim, Mi Kyoung;Lee, Jae Ik;Sin, Su Il;Lee, Dong Hyung;Kim, Ki Hyung;Lee, Kyu Sup
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.2
    • /
    • pp.133-147
    • /
    • 2005
  • Objectives: This study was carried out to establish human embryonic stem cells derived from frozen-thawed embryos using mouse embryonic fibroblasts (mEFs), human fetal skin and muscle fibroblasts as feeder cells, and to identify the characteristic of embryonic stem cells. Methods: When primary mEFs, human fetal skin and muscle fibroblasts were prepared, passaging on 4 days from replating could have effective trypsinization and clear feeder layers. Eight of 23 frozenthawed 4~8 cell stage embryos donated from consenting couples developed to blastocysts. Inner cell mass (ICM) was isolated by immunosurgery. ICM was co-cultured on mEFs, human fetal skin or muscle fibroblasts. The ICM colonies grown on mEFs, human fetal skin or muscle fibroblasts were tested the expression of stage specific embryonic antigen-3, -4 (SSEA-3, -4), octamer binding transcription factor-4 mRNA (Oct-4) and alkaline phosphatase surface marker. Results: We obtained 1 ICM colony from 2 ICM co-cultured on mEFs as feeder cells and did not obtain any ICM colony from 6 ICM clumps co-cultured on human fetal skin or muscle fibroblasts. The colony formed on mEFs could be passaged 30 times every 5 days with sustaining undifferentiated colony appearance. When the colonies cultured on mEFs were grown on human fetal skin or muscle fibroblasts, the colonies could be passaged 15 times every 9 days with sustaining undifferentiated colony appearance. The colonies grown on mEFs and human fetal fibroblasts expressed SSEA-4 and alkaline phosphatase surface markers and positive for the expression of Oct-4 by reverse transcription-polymerase chain reaction (RT-PCR). The produced embryoid body differentiated spontaneously to neural progenitorlike cells, neuron-like cells and beating cardiomyocyte-like cells, and frozen-thawed embryonic stem cells displayed normal 46,XX karyotype. Conclusions: The human embryonic stem cells can be established by using mEFs and human fetal fibroblasts produced in laboratory as feeder cells.

Inhibitory Effects of Tributyltin Acetate on Dopamine Biosynthesis in PC12 Cells (Tributyltin 화합물이 PC12 세포의 Dopamine 생합성 저해작용에 미치는 영향)

  • Kim Yu-Mi;Lee Jae-Joon;Lee Myung-Koo
    • YAKHAK HOEJI
    • /
    • v.50 no.2
    • /
    • pp.105-110
    • /
    • 2006
  • The effects of tributyltin acetate (TBTA), one of the endocrine-disrupting organotin compounds, on dopamine biosynthesis in PC12 cells were investigated. Treatment of PC12 cells with TBTA at $0.05\sim0.25{\mu}M$ significantly decreased the intracellular dopamine content in a concentration-dependent manner ($IC_{50}$ value, $0.17{\mu}M$). Under these conditions, tyrosine hydroxylase (TH) activity and TH mRNA level were also decreased by $0.1{\mu}M$ TBTA at 24 h, and recovered there-after. In addition, treatment with L-DOPA at 20 and $50 {\mu}M$ increased the intracellular dopamine content in PC12 cells and the increase in dopamine content by L-DOPA was significantly abolished by TBTA at $0.1\sim0.2{\mu}M$. These results indicate that TBTA at $0.1\sim0.2{\mu}M$ causes the decrease in the basal dopamine content and abolishes the increase in dopamine content in L-DOPA-treated cells in part by the inhibition of TH gene expression and activity.

Effects of Protoberberine Alkaloids on L-DOPA-Induced Cytotoxicity in PC12 Cells (Protoberberine 알칼로이드가 PC12 세포중의 L-DOPA 유도 세포독성 작용에 미치는 영향)

  • 이재준;김유미;김춘매;양유정;강민희;이명구
    • YAKHAK HOEJI
    • /
    • v.47 no.4
    • /
    • pp.230-233
    • /
    • 2003
  • Previously, protoberberine alkaloids such as berberine and palmatine have been found to lower dopamine content in PC12 cells (Shin et at., 2000). In this study, the effects of berberine and palmatine on L-DOPA-induced increase in dopamine level and cytotoxicity in PC12 cells were investigated. Treatment of PC12 with L-DOPA at concentration ranges of 20∼50 $\mu$M increased dopamine content and the increase in dopamine levels by L-DOPA was inhibited by 10∼40 $\mu$M berberine and 10∼80 $\mu$M palmatine, which the concentration ranges did not show a cytotoxicity. However, berberine and palmatine at concentrations higher than 50 $\mu$M and 100 $\mu$M caused a cytotoxicity, respectively. In addition, berberine (10∼20 $\mu$M) and palmatine (10∼50 $\mu$M) at non-cytotoxic concentration ranges aggravated L-DOPA-induced cytotoxicity in PC12 cells (L-DOPA concentration ranges, 20∼50 $\mu$M). The L-DOPA-induced cytotoxicity was also significantly potentiated by berberine (50 $\mu$M) and palmatine (100 $\mu$M) with cytotoxic ranges. These data demonstrate that berberine and palmatine inhibit L-DOPA-induced increase in dopamine content and stimulate L-DOPA-induced neurotoxicity. Therefore, the possibility that the long-term L-DOPA treated patients with berberine and palmatine could be checked the adverse symptoms.

Effects of High Glucose Levels on the Protein Kinase C Signal Transduction Pathway in Primary Cultured Renal Proximal Tubule Cells

  • Han, Ho-Jae;Kang, Ju-Won;Park, Kwon-Moo
    • The Korean Journal of Physiology
    • /
    • v.30 no.2
    • /
    • pp.257-267
    • /
    • 1996
  • Diabetes mellitus is associated with a wide range of pathophysiologic changes in the kidney. This study was designed to examine the mechanisms by which glucose modulates the expression of polarized membrane transport functions in primary cultured rabbit renal proximal tubule cells. Results are as follows: The rate of 30 minute $Rb^{+}$ uptake was significantly higher($137.76{\pm}5.40%$) in primary renal tubular cell cultures treated with 20 mM glucose than that of 5 mM glucose. Not the level of mRNA for the ${\alpha}$ subunit of Na, K-ATPase but that of ${\beta}$ subunit was elevated in primary cultures treated with high glucose. The initial rate of methyl-${\alpha}$-D-glucopyranoside(${\alpha}$-MG) uptake was significantly lower($71.91{\pm}3.02%$) in monolayers treated with 20 mM glucose than that of 5 mM glucose. There was a tendency of an increase in phlorizin binding site in cells treated with 5 mM glucose. However, 3-O-methyl-D-glucose(3-O-MG) uptake was not affected by glucose concentration in culture media. TPA inhibited $Rb^{+}$ uptake by $63.61{\pm}1.94\;and\;45.80{\pm}1.36%$ and ${\alpha}$-MG uptake by $48.54{\pm}3.69\;and\;41.87{\pm}6.70%$ in the cells treated with 5 and 20 mM glucose, respectively. Also TPA inhibited mRNA expression of Na/glucose cotransporter in cells grown in 5mM glucose medium. cAMP significantly stimulated ${\alpha}$-MG uptake by $114.65{\pm}5.70%$ in cells treated with 5mM glucose, while it did not affect ${\alpha}$-MG uptake in cell treated with 20 mM glucose. However, cAMP inhibited $Rb^{+}$ uptake by $76.69{\pm}4.16\;and\;66.87{\pm}2.41%$ in cells treated with 5 and 20 mM glucose, respectively. In conclusion, the activity of the renal proximal tubular Na,K-ATPase is elevated in high glucose concentration. In contrast, the activity of the Na/glucose cotransport system is inhibited. High glucose may in part affect the activity of the Na,K-ATPase and the Na/glucose cotransport system by controlling the protein kinase C and/or A signal transduction pathway in primary cultured renal proximal tubule cells.

  • PDF

Comparison of Nitrogen Removal Between Reed and Cattail Wetland Cells in a Treatment Pond System (갈대 및 부들 습지셀의 연못시스템 방류수 질소제거 비교)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.234-239
    • /
    • 2004
  • [ $NO_3$ ]-N and T-N removal rates of cattail wetland cells were compared with those of reed wetland cells. The examined cells were a part of a pond-wetland system composed of two ponds in series and six wetland cells in parallel. Each wetland cell was 25m in length and 6m in width. Cattails (Typha angustifolia) were transplanted into three cells and reeds Phragmites australis) into another three ones in June 2000. Water of Sinyang stream flowing into Kohung Estuarine lake located in the southern part of the Korean Peninsula was pumped into the primary pond, its effluent was discharged into the secondary pond Effluent from the secondary pond was funneled into each cell. Two cattail and reed cells were chosen for this research. Water quantity and quality of influnt and effluent were analyzed front May 2001 through October 2001. The volume of influent and effluent of the cells averaged about $20.0\;m^3/day$ and $19.3\;m^3/day$, respectively. Hydraulic retention time was approximately 1.5 days. Influent $NO_3$-N concentration for the four cells averaged 2.39 mg/L. Effluent $NO_3$-N concentration far the cattail and reed cells averaged 1.74 and 1.78 mg/L, respectively. Average $NO_3$-N retention rate for the cattail and reed cells by mass was 30 and 29%, respectively. Influent T-N concentration far the four cells averaged 4.13 mg/L. Effluent T-N concentration for the cattail and reed cells averaged 2.55 and 2.61 mgL respectively. Average T-N retention rate for the cattail and reed cells by mass was 39 and 38%, respectively. $NO_3$-N and T-N concentrations in effluent from the cattail cells were significantly low (p=0.04), compared with those from the reed cells. Cattail wetland cells were more efficient for $NO_3$-N and T-N abatement than reed ones.