• Title/Summary/Keyword: M/W Band

Search Result 450, Processing Time 0.026 seconds

Tunable $CO_2$ Laser for FIR Laser Pumping (원적외선 레이저 펌핑용 가변파장 $CO_2$ 레이저)

  • 진윤식;정기형;이헌주
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.155-161
    • /
    • 1990
  • A Continous wave tunable $CO_2$ laser which is the slow axial flow type was construccted for the optical pumping of methyl alcohol ($CH_3OH$) laser. The reflective grating of 100 grooveslmm and 10.6$\mu\textrm{m}$ blaze wavelength was used to select wavelength. We have investigated continous outpu: power characteristics, and then have compared tuned output power profile with the gain curve of $CO_2$ laser. The optimum condition for maxium power was found at the gas mixing ratio 1 : 3 : 10 for $CO_2: N_2$ and He. under this condition the flow rate, pressure of lasing gas and discharge current are 9.5 llmin. 14 torr, and 55 mA respectively. The maxium output power was 55 Wlm. Output power of single wavelength operation was measured on 60 individual rotation vibration transitions in the P and K branches of the 9.5$\mu\textrm{m}$ band and 10.4$\mu\textrm{m}$ band in $CO_2$. The output power profile obtained from each band is well consistent with the gain curve of $CO_2$ laser and maxium tuned output power was 20 watt.

  • PDF

A Study on the Performance of M/W Band Portable Digital Wireless Transmission System (M/W 대역 휴대용 디지털 무선전송 시스템의 성능에 관한 연구)

  • Seo, In-Hye;Kang, Heau-Jo;Choi, Yong-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.233-236
    • /
    • 2005
  • 국내외적으로 M/W 중계용 주파수 대역은 3${\sim}$30GHz 대역이다. 그러나 갈수록 늘어나는 서비스와 전송용량의 증대로 인해 주파수 부족현상이 일어나는 추세이다. 이에 대한 방안으로 주파수 재배치에 관한 문제가 대두되고 있다. 이동방송 중계용 링크인 FPU 링크는 차후 다른 주파수 대역으로 이전시 이전의 링크에서 사용되었던 시스템 제원을 토대로 필요한 대역에 대해 다양한 변조방식으로 시뮬레이션 평가 후 이용채널 개수 및 이전 가능 여부등과 같은 조치가 수행되어져야 한다. 본 논문에서는 M/W 대역 휴대용 디지털 무선전송 시스템으로써 디지털 FPU 링크 시스템을 모델링하고 이동환경에서 발생하는 도플러 천이 효과를 고려한 Clark & Gans 페이딩 채널 모델을 고려하여 페이딩의 영향에 따른 시스템 성능을 분석하였다.

  • PDF

V-band CPW receiver chip set using GaAs PHEMT (GaAs PHEMT를 이용한 V-band CPW receiver chip set 설계 및 제작)

  • W. Y. Uhm;T. S. Kang;D. An;Lee, B. H.;Y. S. Chae;Park, H. M.;J. K. Rhee
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.69-73
    • /
    • 2002
  • We have designed and fabricated a low-cost, V-band CPW receiver chip set using GaAs PHEMT technology for the application of millimeter-wave wireless communication systems. Low noise amplifiers and down-converters were developed for this chip set. The fabricated low noise amplifier showed an S$\sub$21/ gain of 14.9 ㏈ at 60 ㎓ and a noise figure of 4.1 ㏈ at 52 ㎓. The down-converter exhibited a high conversion gain of 2 ㏈ at the low LO Power of 0 ㏈m. This work demonstrates that the GaAs PHEMT technology is a viable low-cost solution for V-band applications.

  • PDF

A study on the sharing between NGSO/MSS service link and existing fixed-service microwave system (NGSO / MSS 서비스링크와 기존 고정서비스 마이크로웨이브 시스템간의 주파수 공유에 관한 연구)

  • 이성수;조삼모;김혁제
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.1
    • /
    • pp.115-125
    • /
    • 1998
  • This paper examined the feasibility of adding a new NGSO/MSS(Non-Geostationary orbit/Mobile satellite service) service link to a frequency band which is already allocated to fixed-service microwave(M/W) system. To achieve this goal, the NGSO/MSS handset performance under the influence of the M/W multiple stations and the influence of handsets on the M/W station were both analyzed. Sharing criterions were also obtained by means of coordination contour in the former case, and handset capacity in the latter case. As the results, it was proven that sharing was feasible only when the vertical distance between handset and trendline was above 4 km except front and back points of M/W antenna bore sight under influence of 9 hops(the distance between hops = 50 km) M/W system on the NGSO/MSS handset, and only when the capacity of handset was below $7.0\times10^{-14}$ handsets/ $m^{2}$ under influence of handsets on the M/W station.

  • PDF

A Study on the Interference for Sharing between the NGSO/MSS System and the M/W Station (NGSO/MSS시스템과 M/W 무선국간의 주파수 공유를 위한 간섭 분석)

  • 이성수;이형수;채종석;강영흥
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.2
    • /
    • pp.196-206
    • /
    • 1999
  • In this paper, we have estimated the interference effects between the NGSO/MSS system and the fixed-service M/W system for sharing the NGSO/MSS system into the frequency band operated by the existing M/W system. Between above two systems, the interference effects must be analyzed in the following three points. That is, PFD(Power Flux Density) level must be obtained in the case of the interference from NGSO satellites into M/W stations, C/I(Carrier-to-Interference Ratio) and the coordination contour in the case of the interference between NGSO/MSS feeder link and a M/W station, and the interference power level and coordination contour in the case of the interference between NGSO/MSS service link(handsets) and M/W stations. Therefore, in order to obtain above three criteria, we have developed the analytical model, introduced the related equations and estimated the system performance by means of the simulation and the theoretial analysis. It is expected that the results will be utilized in setting the criterion for sharing between the NGSO/MSS system and the M/W station.

  • PDF

Digital Low-Power High-Band UWB Pulse Generator in 130 nm CMOS Process (130 nm CMOS 공정을 이용한 UWB High-Band용 저전력 디지털 펄스 발생기)

  • Jung, Chang-Uk;Yoo, Hyun-Jin;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.784-790
    • /
    • 2012
  • In this paper, an all-digital CMOS ultra-wideband(UWB) pulse generator for high band(6~10 GHz) frequency range is presented. The pulse generator is designed and implemented with extremely low power and low complexity. It is designed to meet the FCC spectral mask requirement by using Gaussian pulse shaping circuit and control the center frequency by using CMOS delay line with shunt capacitor. Measurement results show that the center frequency can be controlled from 4.5 GHz to 7.5 GHz and pulse width is 1.5 ns and pulse amplitude is 310 mV peak to peak at 10 MHz pulse repetition frequency(PRF). The circuit is implemented in 0.13 um CMOS process with a core area of only $182{\times}65um^2$ and dissipates the average power of 11.4 mW at an output buffer with 1.5-V supply voltage. However, the core consumes only 0.26 mW except for output buffer.

Analysis of the Radio Interference Between Bluetooth and Unlicensed Radio Transmitters in the 2.4GHz Band (블루투스와 2.4GHz 비허가 무선기기와의 전파간섭 분석)

  • 박승근;박진아;조경록
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.209-213
    • /
    • 2001
  • In this paper, we analyzed the radio interference between Bluetooth and Wireless LAN/video transmitter in the 2.4GHz band with Monte-Carlo Method. The simulation results show that it is necessary to limit under 10mW of the Bluetooth power to avoid the harmful interference between Bluetooth and Wireless LAN/video transmitter.

  • PDF

A Non-coherent IR-UWB RF Transceiver for WBAN Applications in 0.18㎛ CMOS (0.18㎛ CMOS 공정을 이용한 WBAN용 비동기식 IR-UWB RF 송수신기)

  • Park, Myung Chul;Chang, Won Il;Ha, Jong Ok;Eo, Yun Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.36-44
    • /
    • 2016
  • In this paper, an Impulse Radio-Ultra Wide band RF Transceiver for WBAN applications is implemented in $0.18{\mu}m$ CMOS technology. The designed RF transceiver support 3-5GHz UWB low band and employs OOK(On-Off Keying) modulation. The receiver employs non-coherent energy detection architecture to reduce complexity and power consumption. For the rejection of the undesired interferers and improvement of the receiver sensitivity, RF active notch filter is integrated. The VCO based transmitter employs the switch mechanism. As adapt the switch mechanism, power consumption and VCO leakage can be reduced. Also, the spectrum mask is always same at each center frequency. The measured sensitivity of the receiver is -84.1 dBm at 3.5 GHz with 1.579 Mbps. The power consumption of the transmitter and receiver are 0.3nJ/bit and 41 mW respectively.

Design and Fabrication of 25 W Ka-Band SSPA Based on GaN HPA MMICs (GaN HPA MMIC 기반 Ka 대역 25 W SSPA 설계 및 제작)

  • Ji, Hong-gu;Noh, Youn-sub;Choi, Youn-ho;Kwak, Chang-soo;Youm, In-bok;Seo, In-jong;Park, Hyung-jin;Jo, In-ho;Nam, Byung-chang;Kong, Dong-uk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.12
    • /
    • pp.1083-1090
    • /
    • 2015
  • We designed and manufactured Ka-band SSPA include drive amplifier and high power amplifier MMICs by $0.15{\mu}m$ GaN commercial process. Also, we fabricated main components micro-strip line to WR28 waveguide transition and WR28 wave guide power combiner for Ka-band SSPA. This Ka-band SSPA shows saturated output power 44.2 dBm, power added efficiency 16.6 % and power gain 39.2 dB at 29~31 GHz frequency band.

Design of PLL Frequency Synthesizer for a 915MHz ISM Band wireless transponder using CPFSK communication (CPFSK communication 사용한 915MHz ISM Band 위한 PLL Frequency Synthesizer 설계)

  • Kim, Seung-Hoon;Cho, Sang-Bock
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.286-288
    • /
    • 2007
  • In this paper, the fast locking PLL Frequency Synthesizer with low phase noise in a 0.18um CMOS process is presented. Its main application IS for the 915MHz ISM band wireless transponder upon the CPFSK (Continuous Phase Frequency Shift Keying) modulation scheme. Frequency synthesizer, which in this paper, is designed based on self-biased techniques and is independent with processing technology when damping factor and bandwidth fixed to most important parameters as operating frequency ratio, broad frequency range, and input phase offset cancellation. The proposed frequecy synthesizer, which is fully-integrated and is in 320M $^{\sim}$ 960MHz of the frequency range with 10MHz of frequency resolution. And its is implemented based on integer-N architecture. Its power consumption is 50mW at 1.8V of supply voltage and core area is $540{\mu}m$ ${\times}$ $450{\mu}m$. The measured phase noises are -117.92dBc/Hz at 10MHz offset, with low settling time less than $3.3{\mu}s$.

  • PDF