• Title/Summary/Keyword: Lysozyme

Search Result 468, Processing Time 0.027 seconds

Identification of SNPs in Highly Variable Lysozyme Gene in Korean Native Chicken Populations (한국 재래닭의 고변이 Lysozyme 유전자의 SNP 확인)

  • Hoque, M.R.;Kang, B.S.;Lim, H.K.;Choi, K.D.;Lee, J.H.
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.399-404
    • /
    • 2010
  • Single nucleotide polymorphisms (SNPs) in chicken lysozyme (LYZ) gene were investigated in this study. The identification of SNPs in both exon and intron in LYZ gene has led to understanding of evolution for the domestic chicken populations. A total of 24 samples from two Korean native commercial chicken populations (CCPs) were used for the initial identification of SNPs by mixing three DNA samples for sequencing experiments. By comparing with red jungle fowl (RJF), two commercial chicken populations have 18 common polymorphisms. Between two commercial chicken populations, 15 polymorphisms were identified. Of the 33 polymorphisms identified, two indels (21 and 4 bp) were found. Whereas, only one polymorphism in exon 2 at the bp position 1426 was a non-synonymous substitution (p.Ala49Val), indicating the amino acid changes. The identified non-synonymous substitution (p.Ala49Val) is located close to the catalytic sites of the enzyme, which might affect its activity. In our investigation, the polymorphisms in LYZ gene can provide broad ideas for the variation of Korean native chicken populations from the ancestor of chicken breeds as well as the some biological functions of the LYZ gene.

Effects of low salinity stresses on the physiology of disc abalone, Haliotis discus discus (저염분 자극에 의한 둥근전복, Haliotis discus discus의 생리학적 변화)

  • Jwa, Min-Seok;Kang, Kyung-pil;Choi, Mi-Kyung;Yeo, In-Kyu
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.293-303
    • /
    • 2009
  • Effects of stress on the low salinity stress were examined in the pacific abalone Haliotis discus discus. Changes in survival rate, hemolymph count, antioxidant enzyme activities (catalase: CAT and superoxide dismutase: SOD), respiratory burst activity, phenoloxidase activity, lysozyme activity and expression of heat shock protein 70 (HSP70) mRNA were measured 0, 3, 6, 12, 24 or 48hours after low salinity treatment with 25, 30, 33 and 35 psu. Survival rates of pacific abalone were 100% at 33 and 35 psu, but 93 and 97% at 25 and 30 psu for 48 hours, respectively. Hemolymph counts decreased in the time elapsed-dependent way at all of the experimental groups. At low salinity, 25 and 30 psu, SOD and CAT activity increased compared to the experimental group of 33 psu. Moreover, respiratory burst activities of the pacific abalone seemed to have no effect on low salinity stress at any experimental group. However, phenoloxidase activity is an important component of the defence against pathogen that was decreased in a reduction of salinity dependent way. Lysozyme activity also immediately reduced at 25 psu experimental group for 48 h. The HSP70 mRNA was weakly expressed at 33 psu, but strongly detectable at 25 psu experimental group. The HSP 70 mRNA expression in gill increased in the time elapsed-dependent way at 25 psu experimental group and then recovered at 48 h. These results suggest that low salinity stress give rise to inhibitory action of immune system as a result of the decrease of phenoloxidase and lysozyme activity in the pacific abalone, especially.

Effect of L-theanine on non-specific immunoparameters in catfish (Silurus asortus)

  • Heo, Gang-Joon;Shin, Gee-Wook
    • Korean Journal of Veterinary Service
    • /
    • v.35 no.4
    • /
    • pp.347-350
    • /
    • 2012
  • L-theanine was examined for its effects on the generation of superoxide anion, lysozyme and anti-protease in the plasma of catfish (Silurus asotus) by a single intraperitoneal injection with five different concentrations (0, 3, 6, 9 and 12 mg/kg). When compared with the mock-injected group (0 mg/kg), both groups injected with 6 and 9 mg/kg were significantly enhanced in levels of superoxide anion in leukocytes, lysozyme and anti-protease in plasma. Based on the results, L-theanine is thought to function as an immunostimulant and/or immunomodulator on non-specific immune responses in catfish.

Prediction of optimum pH of hydrolases

  • Sung, Nak-Gyu;Yoo, Young-Je
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.571-574
    • /
    • 2000
  • Hydrolase is a group of the most widely used enzymes in industrial biological processes. Generally, their activities are easily changed with pH. With this characteristics, research for the optimal pH of hydrolases is required to obtain the optimization of process conditions. We selected xylanase, lysozyme, glucoamylase and barnase as model enzymes. To predict optimum pH of hydrolases, the calculation program based on Tanford-Kirkwood(TK) model was used. Results show that charge difference of catalytic residues is an important parameter deciding optimum pH and when charge difference of catalytic residues is maximum, optimum pH of the hydrolase establishes.

  • PDF

Degradation of Collagens, Immunoglobulins, and Other Serum Proteins by Protease of Salmonella schottmulleri and its Toxicity to Cultured Cells

  • Na, Byoung-Kuk;Kim, Moon-Bo;Song, Chul-Yong
    • Journal of Microbiology
    • /
    • v.34 no.1
    • /
    • pp.95-100
    • /
    • 1996
  • The effect of the extracellular protease of Salmonella schottmulleri on human serum constituents such as immunoglobulins, hemoglobin and lysozyme and tissue constituents such as fibronectin and collagens was investigated. This protease degraded collagens (type I and III), fibronectin and serum proteins such as human hemoglobin and lysozyme. Bovine serum albumin was degraded slightly. Thus, the present study suggested the possibility that this protease is not only played an important role in invasion of S. schottmulleri by degrading the constituent proteins such as collagens and fibronectin but also induced complications observed in septicemia and chronic infections by degrading the serum proteins. This protease is also capable of degrading defence-oriented humoral proteins, immunoglobulins (IgG and IgM). Furthermore, it is toxic to HEp-2 cells. These findings clarified the possible role of Salmonella protease as a virulence factor in the pathogenesis of Salmonella infections.

  • PDF