DOI QR코드

DOI QR Code

Identification of SNPs in Highly Variable Lysozyme Gene in Korean Native Chicken Populations

한국 재래닭의 고변이 Lysozyme 유전자의 SNP 확인

  • Hoque, M.R. (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Kang, B.S. (Poultry Science Division, National Institute of Animal Science) ;
  • Lim, H.K. (The Graduate School of Bio & Information Technology, Hankyong National University) ;
  • Choi, K.D. (The Graduate School of Bio & Information Technology, Hankyong National University) ;
  • Lee, J.H. (Department of Animal Science and Biotechnology, Chungnam National University)
  • 라세둘 (충남대학교 동물자원생명과학과) ;
  • 강보석 (국립축산과학원 가금과) ;
  • 임희경 (한경대학교 생물정보통신대학원) ;
  • 최강덕 (한경대학교 생물정보통신대학원) ;
  • 이준헌 (충남대학교 동물자원생명과학과)
  • Received : 2010.10.05
  • Accepted : 2010.12.13
  • Published : 2010.12.31

Abstract

Single nucleotide polymorphisms (SNPs) in chicken lysozyme (LYZ) gene were investigated in this study. The identification of SNPs in both exon and intron in LYZ gene has led to understanding of evolution for the domestic chicken populations. A total of 24 samples from two Korean native commercial chicken populations (CCPs) were used for the initial identification of SNPs by mixing three DNA samples for sequencing experiments. By comparing with red jungle fowl (RJF), two commercial chicken populations have 18 common polymorphisms. Between two commercial chicken populations, 15 polymorphisms were identified. Of the 33 polymorphisms identified, two indels (21 and 4 bp) were found. Whereas, only one polymorphism in exon 2 at the bp position 1426 was a non-synonymous substitution (p.Ala49Val), indicating the amino acid changes. The identified non-synonymous substitution (p.Ala49Val) is located close to the catalytic sites of the enzyme, which might affect its activity. In our investigation, the polymorphisms in LYZ gene can provide broad ideas for the variation of Korean native chicken populations from the ancestor of chicken breeds as well as the some biological functions of the LYZ gene.

닭의 진화를 이해하기 위하여 변이가 많다고 알려진 LYZ 유전자의 엑손과 인트론에 존재하는 단일염기다형이 본 연구를 통해 확인되었다. 2개의 한국 재래실용계에서 총 24개체의 DNA 샘플이 본 연구에서 이용되었으며 단일염기 다형의 확인을 위하여 3개체의 샘플을 혼합하여 염기서열 분석을 실시하였다. 적색야계와의 비교를 통하여 두 한국 재래실용계는 18개의 염기서열변이를 확인할 수 있었으며 한국 재래실용계 간에는 15개의 염기서열 변이를 확인할 수 있었다. 총 33개의 변이 중 두 개의 삽입변이(21 bp와 4 bp)가 확인되었다. 한편, 2번째 엑손의 1426 bp 위치에 존재하는 단일염기 다형(p.Ala49Val)은 아미노산의 변이를 나타내는 미스센스 돌연변이로 확인되었다. 이 돌연변이는 이 lysozyme 효소의 촉매작용을 하는 위치에 놓여 있어 효소의 활성과 밀접한 관계가 있을 것으로 추정된다. 본 연구에서 밝혀진 LYZ 유전자의 변이는 이 유전자의 기능뿐 아니라 한국 재래실용계 집단의 구조를 이해하는데 기초자료로 이용될 것으로 사료된다.

Keywords

References

  1. Akishinonomiya, F., T. Miyake, S. Sumi, M. Takada, S. Ohno, N. Kondo. 1994. One subspecies of the Red Jungle Fowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proc. Natl. Acad. Sci. USA. 91: 12505-12509. https://doi.org/10.1073/pnas.91.26.12505
  2. Akishinonomiya, F., T. Miyake, M. Takada, R. Shingu, T. Endo, T. Gojobori, N. Kondo, S. Ohno. 1996. Monophyletic origin and unique dispersal patterns of domestic fowls. Proc. Natl. Acad. Sci. USA. 93: 6792-6795. https://doi.org/10.1073/pnas.93.13.6792
  3. Bachali, S., M. Jager, A. Hassanin, F. Schoentgen, P. Jolles, A. Fiala-Medioni, J.S. Deutsch. 2002. Phylogenetic analysis of invertebrate lysozymes and the evolution of lysozyme function. J. Mol. Evol. 54: 652-664. https://doi.org/10.1007/s00239-001-0061-6
  4. Berlin, S., L. Qu, X. Li. 2008. Positive diversifying selection in avian Mx genes. Immunogenetics 60: 689-697. https://doi.org/10.1007/s00251-008-0324-0
  5. Bonifer, C., A. Hecht, H. Saueressig, D. Winter, A.E. Sippel. 1991. Dynamic chromatin: the regulatory domain organization of eukaryotic gene loci. J. Cell. Biochem. 47: 99-108. https://doi.org/10.1002/jcb.240470203
  6. Darnell, J.E.Jr. 1978. Implications of RNA-RNA splicing in evolution of eukaryotic cells. Science 202: 1257-1260. https://doi.org/10.1126/science.364651
  7. Doolittle, W.F. 1978. Genes in pieces: were they ever together. Nature 272: 581-582. https://doi.org/10.1038/272581a0
  8. Downing, T., C.O. Farrelly, A.K. Bhuiyan, P. Silva, A.N. Naqvi, R. Sanfo, R.S. Sow, B. Podisi, O. Hantte, D.G. Bradley. 2009a. Variation in chicken populations affect the enzymatic activity of lysozyme. Anim. Genet. 41: 213-217.
  9. Downing, T., D.J. Lynn, S. Connell. 2009b. Contrasting evolution of diversity at two disease-associated chicken genes. Immunogenetics. 61: 303-314. https://doi.org/10.1007/s00251-009-0359-x
  10. Downing, T., D.J. Lynn, S. Connell. 2009c. Bioinformatic detection and population-level validation of selection at the chicken interleukin 4 receptor alpha chain gene. BMC. Evol. Biol. 9: 136. https://doi.org/10.1186/1471-2148-9-136
  11. Eriksson, J., G. Larson, U. Gunnarsson. 2008. Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS. Genet. 4: e1000010. https://doi.org/10.1371/journal.pgen.1000010
  12. Fumihito, A., T. Miyake, S. Sumi. 1996. One subspecies of the red jungle fowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proc. Natl. Acad. Sci. USA. 91: 12505-12509.
  13. Fumihito, A., T. Miyake, M. Takada. 1994. Monophyletic origin and unique dispersal patterns of domestic fowls. Proc. Natl. Acad. Sci. USA. 93: 6792-6795.
  14. Grewal, T., M. Theisen, U. Borgmeyer, T. Grussenmeyer, R.A.W. Rupp, A. Stief, F. Qian, A. Hecht, A.E. Sippel. 1992. The 6.1-kilobase chicken lysozyme enhancer is a multifactorial complex containing several cell-type-specific elements. Mol. Cell. Biol. 12: 2339-2350.
  15. Hebert, P.D.N., A. Cywinska, S.L. Ball, J.R. DeWaard. 2003. Biological identifications through DNA barcodes. Proc. R. Soc. B. 270: 313-321. https://doi.org/10.1098/rspb.2002.2218
  16. Holler, E., J. Rupley, G. Hess. 1975a. Productive and unproductive lysozyme-chitosaccaride complexes. Equilibrium measurements. Biochemistry. 14: 1088-1094. https://doi.org/10.1021/bi00676a032
  17. Holler, E., J. Rupley, G. Hess. 1975b. Productive and unproductive lysozyme-chitosaccaride complexes. Kinetic investigations. Biochemistry. 14: 2377-2385. https://doi.org/10.1021/bi00682a017
  18. Hou, Q.R., J.Y. Wang, H.H. Wang, Y. Li, G.X. Zhang, Y. Wei, Hassan. 2010. Analysis of polymorphisms in exons of the LYZ gene and effect on growth traits of Jinghai Yellow Chicken. Int. J. Poult. Sci. 9(4): 357-362. https://doi.org/10.3923/ijps.2010.357.362
  19. Hou, Z.C., G.Y. Xu, Z.. X. 2007. Purifying selection and positive selection on the myxovirn tresistancethene in hemhels and chickens. Gene. 396: 188-195. https://doi.org/10.1016/j.gene.2007.03.017
  20. International Chicken Genome Sequencing Consortium. 2004. Sequencing and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695-716. https://doi.org/10.1038/nature03154
  21. Jolles, P. 1996. Lysozymes: Model enzymes in biochemistry and biology. Birkhauser Basel.
  22. Lamont, S.J. 1998. The chicken major histocompatibility complex and disease. Rev. Sci. Tech. OIE. 17: 128-142.
  23. Li, X.Y., L.J. Qu, J.F. Yao. 2006. Skewed allele frequencies of an Mx gene mutation with potential resistance to avian influenza virus in different chicken populations. Poult. Sci. 85: 1327-1329.
  24. Liu, Y.P., G.S. Wu, Y.G. Yao, Y.W. Miao, G. Luikart, M. Baig, A.B. Pereira, Z.L. Ding, M.G. Palanichamy, Y.P. Zhang. 2006. Multiple maternal origins of chickens: Out of the Asian jungles. Mol. Phylogenet. Evol. 38(1): 12-19. https://doi.org/10.1016/j.ympev.2005.09.014
  25. Liu, Z.G., C.Z. Lei, J. Luo, C. Ding, G.H. Chen, H. Chang, K.H. Wang, X.X. Liu, X.Y. Zhang, X.J. Xiao, S.L. Wu. 2004. Genetic variability of mtDNA sequences in Chinese native chicken breeds. Asian-Aust. J. Anim. Sci. 17(7): 903-909.
  26. Mobegi, A.V., Chicken Diversity Consortium. 2005. Mitochondrial DNA D-loop sequences reveal the genetic diversity of African chicken. Proceedings of the 4th All Africa Conference on Animal Agriculture. September 20-24.
  27. Nishibori, M., T. Shimogiri, T. Hayashi. 2005. Molecular evidence for hybridization of species in the genus Gallus except for Gallus varius. Anim. Genet. 36: 367-375. https://doi.org/10.1111/j.1365-2052.2005.01318.x
  28. Niu, D., Y. Fu, J. Luo, H. Ruan, X.P. Yu, G. Chen, Y.P. Zhang. 2002. The origin and genetic diversity of Chinese native chicken breeds. Biochem. Genet. 40(5/6): 163-174. https://doi.org/10.1023/A:1015832108669
  29. O'Neill, A.M., E.J. Livant, S.J. Ewald. 2009. The chicken BF1 (classical MHC class I) gene shows evidence of selection for diversity in expression and in promoter and signal peptide regions. Immunogenetics 61: 289-302. https://doi.org/10.1007/s00251-008-0354-7
  30. Silva, P., X. Guan, O. Ho-Shing. 2008. Mitochondrial DNA based analysis of genetic variation and relatedness among Srilankan indigenous chickens and the Ceylon jungle fowl (Gallus lafayeti). Anim. Genet. 40: 1-9.
  31. Sippel, A.E., M. Theisen, U. Borgmeyer, U. Strech- Jurk, R.A.W. Rupp, A.W. Puschel, A. Muller, Hecht, A. Stief, T. Grussenmeyer. 1988. Regulatory function and molecular structure of DNaseI-hypersensitive elements in the chromatin domain of a gene. Architecture of Eukaryotic Genes 355-369.
  32. Theisen, M., A. Stief, A.E. Sippel. 1986. The lysozyme enhancer: cell-specific activation of the chicken lysozyme gene by a far-upstream DNA element. EMBO J. 5(4): 719-724.
  33. Worley, K., M. Gillingham, P. Jensen. 2008. Single locus typing of MHC class I and class II B loci in a population of red jungle fowl. Immunogenetics 60: 233-247. https://doi.org/10.1007/s00251-008-0288-0