• Title/Summary/Keyword: Lysophosphatidylethanolamine

Search Result 8, Processing Time 0.031 seconds

Calcium Signaling of Lysophosphatidylethanolamine through LPA1 in Human SH-SY5Y Neuroblastoma Cells

  • Lee, Jung-Min;Park, Soo-Jin;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.194-201
    • /
    • 2017
  • Lysophosphatidylethanolamine (LPE), a lyso-type metabolite of phosphatidylethanolamine, has been reported to be an intercellular signaling molecule. LPE mobilizes intracellular $Ca^{2+}$ through G-protein-coupled receptor (GPCR) in some cells types. However, GPCRs for lysophosphatidic acid (LPA) were not implicated in the LPE-mediated activities in LPA GPCR overexpression systems or in SK-OV3 ovarian cancer cells. In the present study, in human SH-SY5Y neuroblastoma cells, experiments with $LPA_1$ antagonists showed LPE induced intracellular $Ca^{2+}$ increases in an $LPA_1$ GPCR-dependent manner. Furthermore, LPE increased intracellular $Ca^{2+}$ through pertussis-sensitive G proteins, edelfosine-sensitive-phospholipase C, 2-APB-sensitive $IP_3$ receptors, $Ca^{2+}$ release from intracellular $Ca^{2+}$ stores, and subsequent $Ca^{2+}$ influx across plasma membranes, and LPA acted on $LPA_1$ and $LPA_2$ receptors to induce $Ca^{2+}$ response in a 2-APB-sensitive and insensitive manner. These findings suggest novel involvements for LPE and LPA in calcium signaling in human SH-SY5Y neuroblastoma cells.

Lysophosphatidylethanolamine Treatment Delays Leaf Senescence and Improve Fruit Storability in Melon (Cucumis melo L.)

  • Hong, Ji-Heun
    • Horticultural Science & Technology
    • /
    • v.30 no.2
    • /
    • pp.158-161
    • /
    • 2012
  • The influence of lysophosphatidylethanolamine (LPE) on anti-senescence of melon leaves and the change in fruit quality during the storage at low temperature were studied. In most of the crops, freshness of leaves is important factor for characteristics of fruits, such as sugar contents, color, and firmness. Melon ($Cucumis$ $melo$ L. cv. Prince) plants were sprayed with LPE at 5 and 3 weeks before commercial harvest. In upper part, LPE treatment showed slight high number of fresh leaf compared to no treatment (None). However, in lower part, LPE resulted in apparent inhibition effect on senescence, showing that lower side of melon plant kept fresh upon LPE application up to about 30%. The SSC of melon treated with LPE was similar to that of fruit from None at harvest. There was no change in soluble solids content (SSC) for all treatment during the storage at $7^{\circ}C$. There were no significant differences in firmness of mesocarp from melons given different treatments at harvest. The firmness of mesocarp from melon treated with LPE was higher than none after 2 weeks storage. The electrolyte leakage means for melon treated with LPE did not differ significantly from the means at initial storage after 2 weeks storage among the treatments. None increased 57% from its initial electrolyte leakage during storage. These results suggest that the application of LPE may have potential to inhibit senescence of leaves and maintain fruit quality during the storage in melon.

Action and Signaling of Lysophosphatidylethanolamine in MDA-MB-231 Breast Cancer Cells

  • Park, Soo-Jin;Lee, Kyoung-Pil;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.129-135
    • /
    • 2014
  • Previously, we reported that lysophosphatidylethanolamine (LPE), a lyso-type metabolite of phosphatidylethanolamine, can increase intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) via type 1 lysophosphatidic acid (LPA) receptor ($LPA_1$) and CD97, an adhesion G-protein-coupled receptor (GPCR), in MDA-MB-231 breast cancer cells. Furthermore, LPE signaling was suggested as like $LPA_1/CD97-G_{i/o}$ proteins-phospholipase $C-IP_3-Ca^{2+}$ increase in these cells. In the present study, we further investigated actions of LPE not only in the $[Ca^{2+}]_i$ increasing effect but also in cell proliferation and migration in MDA-MB-231 breast cancer cells. We utilized chemically different LPEs and a specific inhibitor of $LPA_1$, AM-095 in comparison with responses in SK-OV3 ovarian cancer cells. It was found that LPE-induced $Ca^{2+}$ response in MDA-MB-231 cells was evoked in a different manner to that in SK-OV3 cells in terms of structural requirements. AM-095 inhibited LPE-induced $Ca^{2+}$ response and cell proliferation in MDA-MB-231 cells, but not in SK-OV3 cells, supporting $LPA_1$ involvement only in MDA-MB-231 cells. LPA had significant effects on cell proliferation and migration in MDA-MB-231 cells, whereas LPE had less or no significant effect. However, LPE modulations of MAPKs (ERK1/2, JNK and p38 MAPK) was not different to those by LPA in the cells. These data support the involvement of LPA1 in LPE-induced $Ca^{2+}$ response and cell proliferation in breast MDA-MB-231 cells but unknown GPCRs (not $LPA_1$) in LPE-induced responses in SK-OV3 cells. Furthermore, although LPE and LPA utilized $LPA_1$, LPA utilized more signaling cascades than LPE, resulting in stronger responses by LPA in proliferation and migration than LPE in MDA-MB-231 cells.

Lysophosphatidylethanolamine (LPE) Improves Fruit Size, Color, Quality and Phytochemical Contents of Sweet Cherry c.v. '0900 Ziraat'

  • Ozgen, Mustafa;Serce, Sedat;Akca, Yasar;Hong, Ji Heun
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.196-201
    • /
    • 2015
  • Lysophosphatidylethanolamine (LPE) affects the quality of flowers, fruits, and other horticultural products. Studies have provided evidence that LPE can accelerate ripening of fruits and prolong shelf-life at the same time. In this study, the influence of LPE on anthocyanin accumulation and phytochemical characteristics of sweet cherry was investigated. LPE ($10mg{\cdot}L^{-1}$) was applied to a commercial sweet cherry c.v. '0900 Ziraat' orchard two and four weeks before harvest for two treatment years (2011 and 2012). Preharvest applications of LPE resulted in significant improvement in both pomological and phytochemical attributes at harvest. LPE treatment led to a 17% increase in fruit weight and a 6% increase in soluble solid content when averaged over two experimental years. Fruit phytochemical content and antioxidant capacity were increased significantly. The average total phenolic content of LPE-treated fruits for the two years was $703{\mu}g$ gallic acid equivalent (GAE)/g fresh weight (g FW) compared to $569{\mu}g$ GAE/g FW in the untreated control. Fruits treated with LPE had a 27% and 16% more anthocyanin than the control fruits in 2011 and 2012. Antioxidant capacity of fruits, as measured by TEAC (Trolox equivalent antioxidant capacity) assay, was 12.5 and $11.4{\mu}mol$ TE/g FW in LPE-treated and untreated control fruits, respectively, when averaged over two experimental years. Our results suggest that preharvest application of LPE may have the potential to increase anthocyanin accumulation, improve fruit quality and enhance phytochemical characteristics of sweet cherries.

Lipidomic analysis of plasma lipids composition changes in septic mice

  • Ahn, Won-Gyun;Jung, Jun-Sub;Song, Dong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.4
    • /
    • pp.399-408
    • /
    • 2018
  • A lipidomic study on extensive plasma lipids in bacterial peritonitis (cecal ligation and puncture, CLP)-induced sepsis in mice was done at 24 h post-CLP. The effects of administration of lysophosphatidylcholine (LPC) and lysophosphatidic acid (LPA), compounds known to have beneficial effects in CLP, on the sepsis-induced plasma lipid changes were also examined. Among the 147 plasma lipid species from 13 lipid subgroups (fatty acid [FA], LPA, LPC, lysophosphatidylethanolamine [LPE], phosphatidic acid [PA], phosphatidylcholine [PC], phosphatidylethanolamine [PE], phosphatidylinositol [PI], monoacylglyceride [MG], diacylglyceride [DG], triacylglyceride [TG], sphingomyelin [SM], and ceramide [Cer]) analyzed in this study, 40 and 70 species were increased, and decreased, respectively, in the CLP mice. Treatments with LPC and LPA affected 14 species from 7 subgroups, and 25 species from 9 subgroups, respectively. These results could contribute to finding the much needed reliable biomarkers of sepsis.

Determination of Optimal Concentration of LPE (Lysophosphatidylethanolamine) for Postharvest Stability and Quality of Strawberry Fruit (딸기 수확 후 저장기간 연장 및 품질 개선을 위한 LPE (Lysophosphatidylethanolamine) 적정 처리농도 구명)

  • Choi, Ki-Young;Kim, Il-Seop;Yun, Young-Sik;Choi, Eun-Young
    • Journal of Bio-Environment Control
    • /
    • v.25 no.3
    • /
    • pp.153-161
    • /
    • 2016
  • This study aims to determine the optimal maturity of strawberry fruits as affected by the application of lysophosphatidylethanolamine (LPE) and its optimal concentration for postharvest stability and quality. Prior to application of treatments, fruits that were classified into levels of maturity (0%, 50%, 70% and 100%) were air-dried for 40 minutes and stored in the refrigerator at $4^{\circ}C$ for 12 days. Fruits at 70% maturity were dipped into 0, 10, 50 and $100mg{\cdot}L^{-1}$ LPE solutions for 1 minute. A lower range of concentration (0, 2.5, 5, 10 and $25mg{\cdot}L^{-1}$) was applied to fruits at different maturity levels. Data on fresh weight, hardness at vertical and horizontal loading positions, color index and sugar content during storage were collected. Based on fruits with 70% maturity dipped in LPE concentrations, there were no significant differences found on fresh weight, color index and sugar content. However, the application of $10mg{\cdot}L^{-1}$ LPE gave the highest hardness at vertical loading position while $100mg{\cdot}L^{-1}$ had the lowest average. At lower range of LPE concentrations, fresh weight was not significantly affected by LPE application and maturity levels. Hardness of fruits was mainly based on the maturity of the fruits. Increased hardness was observed in the fruits with 70% maturity dipped into the $5mg{\cdot}L^{-1}$ of LPE solution. The hardness and Hunter's $L^*$ and $b^*$ value of 100% matured fruits gave lowest values despite the application of $25mg{\cdot}L^{-1}$ LPE 12 days after storage.

Lipidomic profiling of Skipjack tuna (Katsuwonus pelamis) by ultrahigh-performance liquid chromatography coupled to high resolution mass spectrometry

  • Hu, Lingping;Hu, Zhiheng;Chin, Yaoxian;Yu, Haixia;Xu, Jianhong;Zhou, Jianwei;Liu, Donghong;Kang, Mengli;Hu, Yaqin
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.3
    • /
    • pp.140-150
    • /
    • 2022
  • A method of ultrahigh performance liquid chromatography coupled to high resolution mass spectrometry (UPLC-HRMS) was established for characterization of the lipid profile of Skipjack tuna. Over 300 lipid molecular species were identified through cross-acquisition in both positive and negative ion mode. Phospholipids (PLs) were dominant in Skipjack tuna. Lysophosphatidylethanolamine (LPE), phosphatidylethanolamine (PE), lysophosphatidylcholine (LPC) and phosphatidylcholine (PC) were the main lipid molecular species in PLs, accounting for 89.24% of the total PLs. The ratio of sphingolipids (SLs) and glycerolipids (GLs) were considerable, accounting for 12.30% and 13.60% of the total lipids respectively. Ceramide (Cer) was the main lipid molecular species of SLs, accounting for 64.96% of total SLs, followed by sphingomyelin (SM), accounting for 25.45% of total SLs. Ether diglycerides (ether DG) were the main lipid molecular species of GLs (97.83%). The main fatty acids (FAs) are unsaturated fatty acids (UFAs) in Skipjack tuna. Besides, a new FAs class branched fatty acid esters of hydroxy fatty acids (FAHFA) was detected, together with the FA. The active lipids identified in this study can be used to evaluate the nutritional value of Skipjack tuna.

Bioactive lipids in gintonin-enriched fraction from ginseng

  • Cho, Hee-Jung;Choi, Sun-Hye;Kim, Hyeon-Joong;Lee, Byung-Hwan;Rhim, Hyewon;Kim, Hyoung-Chun;Hwang, Sung-Hee;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.209-217
    • /
    • 2019
  • Background: Ginseng is a traditional herbal medicine for human health. Ginseng contains a bioactive ligand named gintonin. The active ingredient of gintonin is lysophosphatidic acid C18:2 (LPA C18:2). We previously developed a method for gintonin-enriched fraction (GEF) preparation to mass-produce gintonin from ginseng. However, previous studies did not show the presence of other bioactive lipids besides LPAs. The aim of this study was to quantify the fatty acids, lysophospholipids (LPLs), and phospholipids (PLs) besides LPAs in GEF. Methods: We prepared GEF from white ginseng. We used gas chromatography-mass spectrometry for fatty acid analysis and liquid chromatography-tandem mass spectrometry for PL analysis, and quantified the fatty acids, LPLs, and PLs in GEF using respective standards. We examined the effect of GEF on insulin secretion in INS-1 cells. Results: GEF contains about 7.5% linoleic (C18:2), 2.8% palmitic (C16:0), and 1.5% oleic acids (C18:1). GEF contains about 0.2% LPA C18:2, 0.06% LPA C16:0, and 0.02% LPA C18:1. GEF contains 0.08% lysophosphatidylcholine, 0.03% lysophosphatidylethanolamine, and 0.13% lysophosphatidylinositols. GEF also contains about 1% phosphatidic acid (PA) 16:0-18:2, 0.5% PA 18:2-18:2, and 0.2% PA 16:0-18:1. GEFmediated insulin secretion was not blocked by LPA receptor antagonist. Conclusion: We determined four characteristics of GEF through lipid analysis and insulin secretion. First, GEF contains a large amount of linoleic acid (C18:2), PA 16:0-18:2, and LPA C18:2 compared with other lipids. Second, the main fatty acid component of LPLs and PLs is linoleic acid (C18:2). Third, GEF stimulates insulin secretion not through LPA receptors. Finally, GEF contains bioactive lipids besides LPAs.