DOI QR코드

DOI QR Code

Action and Signaling of Lysophosphatidylethanolamine in MDA-MB-231 Breast Cancer Cells

  • Park, Soo-Jin (Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University) ;
  • Lee, Kyoung-Pil (Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University) ;
  • Im, Dong-Soon (Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University)
  • Received : 2013.12.20
  • Accepted : 2014.03.04
  • Published : 2014.03.31

Abstract

Previously, we reported that lysophosphatidylethanolamine (LPE), a lyso-type metabolite of phosphatidylethanolamine, can increase intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) via type 1 lysophosphatidic acid (LPA) receptor ($LPA_1$) and CD97, an adhesion G-protein-coupled receptor (GPCR), in MDA-MB-231 breast cancer cells. Furthermore, LPE signaling was suggested as like $LPA_1/CD97-G_{i/o}$ proteins-phospholipase $C-IP_3-Ca^{2+}$ increase in these cells. In the present study, we further investigated actions of LPE not only in the $[Ca^{2+}]_i$ increasing effect but also in cell proliferation and migration in MDA-MB-231 breast cancer cells. We utilized chemically different LPEs and a specific inhibitor of $LPA_1$, AM-095 in comparison with responses in SK-OV3 ovarian cancer cells. It was found that LPE-induced $Ca^{2+}$ response in MDA-MB-231 cells was evoked in a different manner to that in SK-OV3 cells in terms of structural requirements. AM-095 inhibited LPE-induced $Ca^{2+}$ response and cell proliferation in MDA-MB-231 cells, but not in SK-OV3 cells, supporting $LPA_1$ involvement only in MDA-MB-231 cells. LPA had significant effects on cell proliferation and migration in MDA-MB-231 cells, whereas LPE had less or no significant effect. However, LPE modulations of MAPKs (ERK1/2, JNK and p38 MAPK) was not different to those by LPA in the cells. These data support the involvement of LPA1 in LPE-induced $Ca^{2+}$ response and cell proliferation in breast MDA-MB-231 cells but unknown GPCRs (not $LPA_1$) in LPE-induced responses in SK-OV3 cells. Furthermore, although LPE and LPA utilized $LPA_1$, LPA utilized more signaling cascades than LPE, resulting in stronger responses by LPA in proliferation and migration than LPE in MDA-MB-231 cells.

Keywords

References

  1. Ahn, B. R., Moon, H. E., Kim, H. R., Jung, H. A. and Choi, J. S. (2012) Neuroprotective effect of edible brown alga Eisenia bicyclis on amyloid ${\beta}$ peptide-induced toxicity in PC12 cells. Arch. Pharm. Res. 35, 1989-1998. https://doi.org/10.1007/s12272-012-1116-5
  2. Castelino, F. V., Seiders, J., Bain, G., Brooks, S. F., King, C. D., Swaney, J. S., Lorrain, D. S., Chun, J., Luster, A. D. and Tager, A. M. (2011) Amelioration of dermal fibrosis by genetic deletion or pharmacologic antagonism of lysophosphatidic acid receptor 1 in a mouse model of scleroderma. Arthritis Rheum. 63, 1405-1415. https://doi.org/10.1002/art.30262
  3. Chang, Y. J., Lee, Y. K., Lee, E. H., Park, J. J., Chung, S. K. and Im, D. S. (2006) Structure-activity relationships of dimethylsphingosine (DMS) derivatives and their effects on intracellular pH and $Ca^{2+}$ in the U937 monocyte cell line. Arch. Pharm. Res. 29, 657-665. https://doi.org/10.1007/BF02968250
  4. Choi, J. W. and Chun, J. (2013) Lysophospholipids and their receptors in the central nervous system. Biochim. Biophys. Acta 1831, 20-32. https://doi.org/10.1016/j.bbalip.2012.07.015
  5. Inoue, A., Ishiguro, J., Kitamura, H., Arima, N., Okutani, M., Shuto, A., Higashiyama, S., Ohwada, T., Arai, H., Makide, K. and Aoki, J. (2012) TGFa shedding assay: an accurate and versatile method for detecting GPCR activation. Nature methods 9, 1021-1029. https://doi.org/10.1038/nmeth.2172
  6. Iwashita, M., Makide, K., Nonomura, T., Misumi, Y., Otani, Y., Ishida, M., Taguchi, R., Tsujimoto, M., Aoki, J., Arai, H. and Ohwada, T. (2009) Synthesis and evaluation of lysophosphatidylserine analogues as inducers of mast cell degranulation. Potent activities of lysophosphatidylthreonine and its 2-deoxy derivative. J. Med. Chem. 52, 5837-5863. https://doi.org/10.1021/jm900598m
  7. Jo, S. H., Kim, S. D., Kim, J. M., Lee, H. Y., Lee, S. Y., Shim, J. W., Yun, J., Im, D. S. and Bae, Y. S. (2008) Lysophosphatidylglycerol stimulates chemotactic migration in human natural killer cells. Biochem. Biophys. Res. Commun. 372, 147-151. https://doi.org/10.1016/j.bbrc.2008.05.004
  8. Kitamura, H., Makide, K., Shuto, A., Ikubo, M., Inoue, A., Suzuki, K., Sato, Y., Nakamura, S., Otani, Y., Ohwada, T. and Aoki, J. (2012) GPR34 is a receptor for lysophosphatidylserine with a fatty acid at the sn-2 position. J. Biochem. 151, 511-518. https://doi.org/10.1093/jb/mvs011
  9. Lee, S. Y., Lee, H. Y., Kim, S. D., Jo, S. H., Shim, J. W., Lee, H. J., Yun, J. and Bae, Y. S. (2008) Lysophosphatidylserine stimulates chemotactic migration in U87 human glioma cells. Biochem. Biophys. Res. Commun. 374, 147-151. https://doi.org/10.1016/j.bbrc.2008.06.117
  10. Liebscher, I., Muller, U., Teupser, D., Engemaier, E., Engel, K. M., Ritscher, L., Thor, D., Sangkuhl, K., Ricken, A., Wurm, A., Piehler, D., Schmutzler, S., Fuhrmann, H., Albert, F. W., Reichenbach, A., Thiery, J., Schoneberg, T. and Schulz, A. (2011) Altered immune response in mice deficient for the G protein-coupled receptor GPR34. J. Biol. Chem. 286, 2101-2110. https://doi.org/10.1074/jbc.M110.196659
  11. Makide, K. and Aoki, J. (2013) GPR34 as a lysophosphatidylserine receptor. J. Biochem. 153, 327-329. https://doi.org/10.1093/jb/mvt010
  12. Makide, K., Kitamura, H., Sato, Y., Okutani, M. and Aoki, J. (2009) Emerging lysophospholipid mediators, lysophosphatidylserine, lysophosphatidylthreonine, lysophosphatidylethanolamine and lysophosphatidylglycerol. Prostaglandins Other Lipid Mediat. 89, 135-139. https://doi.org/10.1016/j.prostaglandins.2009.04.009
  13. Misra, U. K. (1965) Isolation of lysophosphatidylethanolamine from human serum. Biochim. Biophys. Acta 106, 371-378. https://doi.org/10.1016/0005-2760(65)90045-7
  14. Nishina, A., Kimura, H., Sekiguchi, A., Fukumoto, R. H., Nakajima, S. and Furukawa, S. (2006) Lysophosphatidylethanolamine in Grifola frondosa as a neurotrophic activator via activation of MAPK. J. Lipid Res. 47, 1434-1443. https://doi.org/10.1194/jlr.M600045-JLR200
  15. Park, K. S., Lee, H. Y., Kim, M. K., Shin, E. H. and Bae, Y. S. (2005) Lysophosphatidylserine stimulates leukemic cells but not normal leukocytes. Biochem. Biophys. Res. Commun. 333, 353-358. https://doi.org/10.1016/j.bbrc.2005.05.109
  16. Park, K. S., Lee, H. Y., Kim, M. K., Shin, E. H., Jo, S. H., Kim, S. D., Im, D. S. and Bae, Y. S. (2006) Lysophosphatidylserine stimulates L2071 mouse fibroblast chemotactic migration via a process involving pertussis toxin-sensitive trimeric G proteins. Mol. Pharmacol. 69, 1066-1073.
  17. Park, K. S., Lee, H. Y., Lee, S. Y., Kim, M. K., Kim, S. D., Kim, J. M., Yun, J., Im, D. S. and Bae, Y. S. (2007) Lysophosphatidylethanolamine stimulates chemotactic migration and cellular invasion in SK-OV3 human ovarian cancer cells: involvement of pertussis toxin-sensitive G-protein coupled receptor. FEBS Lett. 581, 4411-4416. https://doi.org/10.1016/j.febslet.2007.08.014
  18. Park, S. J., Lee, K. P., Kang, S., Chung, H. Y., Bae, Y. S., Okajima, F. and Im, D. S. (2013) Lysophosphatidylethanolamine utilizes $LPA_1$ and CD97 in MDA-MB-231 breast cancer cells. Cell. Signal. 25, 2147-2154. https://doi.org/10.1016/j.cellsig.2013.07.001
  19. Ritscher, L., Engemaier, E., Staubert, C., Liebscher, I., Schmidt, P., Hermsdorf, T., Rompler, H., Schulz, A. and Schoneberg, T. (2012) The ligand specificity of the G-protein-coupled receptor GPR34. Biochem. J. 443, 841-850. https://doi.org/10.1042/BJ20112090
  20. Sugo, T., Tachimoto, H., Chikatsu, T., Murakami, Y., Kikukawa, Y., Sato, S., Kikuchi, K., Nagi, T., Harada, M., Ogi, K., Ebisawa, M. and Mori, M. (2006) Identification of a lysophosphatidylserine receptor on mast cells. Biochem. Biophys. Res. Commun. 341, 1078-1087. https://doi.org/10.1016/j.bbrc.2006.01.069
  21. Swaney, J. S., Chapman, C., Correa, L. D., Stebbins, K. J., Broadhead, A. R., Bain, G., Santini, A. M., Darlington, J., King, C. D., Baccei, C. S., Lee, C., Parr, T. A., Roppe, J. R., Seiders, T. J., Ziff, J., Prasit, P., Hutchinson, J. H., Evans, J. F. and Lorrain, D. S. (2011) Pharmacokinetic and pharmacodynamic characterization of an oral lysophosphatidic acid type 1 receptor-selective antagonist. J. Pharmacol. Exp. Ther. 336, 693-700. https://doi.org/10.1124/jpet.110.175901
  22. Yanagida, K., Kurikawa, Y., Shimizu, T. and Ishii, S. (2013) Current progress in non-Edg family LPA receptor research. Biochim. Biophys. Acta 1831, 33-41. https://doi.org/10.1016/j.bbalip.2012.08.003

Cited by

  1. Petatewalide B, a novel compound from Petasites japonicus with anti-allergic activity vol.178, 2016, https://doi.org/10.1016/j.jep.2015.12.010
  2. The chemical synthesis and preliminary biological studies of phosphodiester and phosphorothioate analogues of 2-methoxy-lysophosphatidylethanolamine vol.26, pp.15, 2016, https://doi.org/10.1016/j.bmcl.2016.05.075
  3. Lipidomic investigation of eggs' yolk: Changes in lipid profile of eggs from different conditions vol.89, 2016, https://doi.org/10.1016/j.foodres.2016.07.006
  4. Comprehensive quantitative lipidomic approach to investigate serum phospholipid alterations in breast cancer vol.13, pp.1, 2017, https://doi.org/10.1007/s11306-016-1138-y
  5. Serum metabolomics analysis reveals changes in signaling lipids in breast cancer patients vol.30, pp.1, 2016, https://doi.org/10.1002/bmc.3556
  6. Anti-allergic effect of α-cubebenoate isolated from Schisandra chinensis using in vivo and in vitro experiments vol.173, 2015, https://doi.org/10.1016/j.jep.2015.07.049
  7. Calcium Signaling of Lysophosphatidylethanolamine through LPA1 in Human SH-SY5Y Neuroblastoma Cells vol.25, pp.2, 2017, https://doi.org/10.4062/biomolther.2016.046
  8. Role of Flightless-I (Drosophila) homolog in the transcription activation of type I collagen gene mediated by transforming growth factor beta vol.454, pp.3, 2014, https://doi.org/10.1016/j.bbrc.2014.10.100
  9. Omega-3 fatty acids induce Ca2+ mobilization responses in human colon epithelial cell lines endogenously expressing FFA4 vol.36, pp.7, 2015, https://doi.org/10.1038/aps.2015.29
  10. Lysophosphatidylethanolamine increases intracellular Ca2+ through LPA1 in PC-12 neuronal cells vol.461, pp.2, 2015, https://doi.org/10.1016/j.bbrc.2015.04.042
  11. Lipidomic analysis of serum samples from migraine patients vol.17, pp.1, 2018, https://doi.org/10.1186/s12944-018-0665-0
  12. Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer vol.11, pp.478, 2019, https://doi.org/10.1126/scitranslmed.aau5758
  13. Multiplatform plasma metabolic and lipid fingerprinting of breast cancer: A pilot control-case study in Colombian Hispanic women vol.13, pp.2, 2014, https://doi.org/10.1371/journal.pone.0190958
  14. The Anti-Inflammatory Effect of Zhibaidihuang Decoction on Recurrent Oral Ulcer with Sirt1 as the Key Regulatory Target vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/8886699
  15. Autotaxin in ascites promotes peritoneal dissemination in pancreatic cancer vol.112, pp.2, 2014, https://doi.org/10.1111/cas.14689
  16. O-1602 Promotes Hepatic Steatosis through GPR55 and PI3 Kinase/Akt/SREBP-1c Signaling in Mice vol.22, pp.6, 2014, https://doi.org/10.3390/ijms22063091
  17. 2-Arachidonyl-lysophosphatidylethanolamine Induces Anti-Inflammatory Effects on Macrophages and in Carrageenan-Induced Paw Edema vol.22, pp.9, 2014, https://doi.org/10.3390/ijms22094865
  18. Relationship between the n-3 index, serum metabolites and breast cancer risk vol.12, pp.17, 2014, https://doi.org/10.1039/d1fo01245b