Browse > Article
http://dx.doi.org/10.4062/biomolther.2016.046

Calcium Signaling of Lysophosphatidylethanolamine through LPA1 in Human SH-SY5Y Neuroblastoma Cells  

Lee, Jung-Min (Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University)
Park, Soo-Jin (Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University)
Im, Dong-Soon (Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University)
Publication Information
Biomolecules & Therapeutics / v.25, no.2, 2017 , pp. 194-201 More about this Journal
Abstract
Lysophosphatidylethanolamine (LPE), a lyso-type metabolite of phosphatidylethanolamine, has been reported to be an intercellular signaling molecule. LPE mobilizes intracellular $Ca^{2+}$ through G-protein-coupled receptor (GPCR) in some cells types. However, GPCRs for lysophosphatidic acid (LPA) were not implicated in the LPE-mediated activities in LPA GPCR overexpression systems or in SK-OV3 ovarian cancer cells. In the present study, in human SH-SY5Y neuroblastoma cells, experiments with $LPA_1$ antagonists showed LPE induced intracellular $Ca^{2+}$ increases in an $LPA_1$ GPCR-dependent manner. Furthermore, LPE increased intracellular $Ca^{2+}$ through pertussis-sensitive G proteins, edelfosine-sensitive-phospholipase C, 2-APB-sensitive $IP_3$ receptors, $Ca^{2+}$ release from intracellular $Ca^{2+}$ stores, and subsequent $Ca^{2+}$ influx across plasma membranes, and LPA acted on $LPA_1$ and $LPA_2$ receptors to induce $Ca^{2+}$ response in a 2-APB-sensitive and insensitive manner. These findings suggest novel involvements for LPE and LPA in calcium signaling in human SH-SY5Y neuroblastoma cells.
Keywords
Lysophosphatidylethanolamine; $LPA_1$; Lysophosphatidic acid; GPCR; Neuroblastoma; Receptor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Heise, C. E., Santos, W. L., Schreihofer, A. M., Heasley, B. H., Mukhin, Y. V., Macdonald, T. L. and Lynch, K. R. (2001) Activity of 2-substituted lysophosphatidic acid (LPA) analogs at LPA receptors: discovery of a $LPA_1/LPA_3$ receptor antagonist. Mol. Pharmacol. 60, 1173-1180.   DOI
2 Im, D. S. (2010) Pharmacological tools for lysophospholipid GPCRs: development of agonists and antagonists for LPA and S1P receptors. Acta Pharmacol. Sin. 31, 1213-1222.   DOI
3 Leclerc, C., Neant, I. and Moreau, M. (2012) The calcium: an early signal that initiates the formation of the nervous system during embryogenesis. Front. Mol. Neurosci. 5, 3.
4 Lee, J. M., Park, S. J. and Im, D. S. (2015) Lysophosphatidylethanolamine increases intracellular $Ca^{2+}$ through $LPA_1$ in PC-12 neuronal cells. Biochem. Biophys. Res. Commun. 461, 378-382.   DOI
5 Makide, K., Kitamura, H., Sato, Y., Okutani, M. and Aoki, J. (2009) Emerging lysophospholipid mediators, lysophosphatidylserine, lyso-phosphatidylthreonine, lysophosphatidylethanolamine and lysophospha-tidylglycerol. Prostaglandins Other Lipid Mediat. 89, 135-139.   DOI
6 Melchior, B. and Frangos, J. A. (2012) Gaq/11-mediated intracellular calcium responses to retrograde flow in endothelial cells. Am. J. Physiol. Cell Physiol. 303, C467-C473.   DOI
7 Meylaers, K., Clynen, E., Daloze, D., DeLoof, A. and Schoofs, L. (2004) Identification of 1-lysophosphatidylethanolamine (C(16:1)) as an antimicrobial compound in the housefly, Musca domestica. Insect Biochem. Mol. Biol. 34, 43-49.   DOI
8 Misra, U. K. (1965) Isolation of lysophosphatidylethanolamine from human serum. Biochim. Biophys. Acta 106, 371-378.   DOI
9 Ohta, H., Sato, K., Murata, N., Damirin, A., Malchinkhuu, E., Kon, J., Kimura, T., Tobo, M., Yamazaki, Y., Watanabe, T., Yagi, M., Sato, M., Suzuki, R., Murooka, H., Sakai, T., Nishitoba, T., Im, D. S., Nochi, H., Tamoto, K., Tomura, H. and Okajima, F. (2003) Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors. Mol. Pharmacol. 64, 994-1005.   DOI
10 Nishina, A., Kimura, H., Sekiguchi, A., Fukumoto, R. H., Nakajima, S. and Furukawa, S. (2006) Lysophosphatidylethanolamine in Grifola frondosa as a neurotrophic activator via activation of MAPK. J. Lipid Res. 47, 1434-1443.   DOI
11 Park, K. S., Kim, M. K., Im, D. S. and Bae, Y. S. (2007a) Effect of lysophosphatidylglycerol on several signaling molecules in OVCAR-3 human ovarian cancer cells: involvement of pertussis toxin-sensitive G-protein coupled receptor. Biochem. Pharmacol. 73, 675-681.   DOI
12 Park, K. S., Lee, H. Y., Lee, S. Y., Kim, M. K., Kim, S. D., Kim, J. M., Yun, J., Im, D. S. and Bae, Y. S. (2007b) Lysophosphatidylethanolamine stimulates chemotactic migration and cellular invasion in SK-OV3 human ovarian cancer cells: involvement of pertussis toxin-sensitive G-protein coupled receptor. FEBS Lett. 581, 4411-4416.   DOI
13 Young, K. W., Challiss, R. A., Nahorski, S. R. and MacKrill, J. J. (1999) Lysophosphatidic acid-mediated $Ca^{2+}$ mobilization in human SHSY5Y neuroblastoma cells is independent of phosphoinositide signalling, but dependent on sphingosine kinase activation. Biochem. J. 343 Pt 1, 45-52.   DOI
14 Park, S. J., Lee, K. P. and Im, D. S. (2014a) Action and Signaling of Lysophosphatidylethanolamine in MDA-MB-231 Breast Cancer Cells. Biomol. Ther. (Seoul) 22, 129-135.   DOI
15 Park, S. J., Lee, K. P., Kang, S., Chung, H. Y., Bae, Y. S., Okajima, F. and Im, D. S. (2013) Lysophosphatidylethanolamine utilizes $LPA_1$ and CD97 in MDA-MB-231 breast cancer cells. Cell. Signal. 25, 2147-2154.   DOI
16 Park, S. J., Lee, K. P., Kang, S., Lee, J., Sato, K., Chung, H. Y., Okajima, F. and Im, D. S. (2014b) Sphingosine 1-phosphate induced anti-atherogenic and atheroprotective M2 macrophage polarization through IL-4. Cell. Signal. 26, 2249-2258.   DOI
17 Swaney, J. S., Chapman, C., Correa, L. D., Stebbins, K. J., Broadhead, A. R., Bain, G., Santini, A. M., Darlington, J., King, C. D., Baccei, C. S., Lee, C., Parr, T. A., Roppe, J. R., Seiders, T. J., Ziff, J., Prasit, P., Hutchinson, J. H., Evans, J. F. and Lorrain, D. S. (2011) Pharmacokinetic and pharmacodynamic characterization of an oral lysophosphatidic acid type 1 receptor-selective antagonist. J. Pharmacol. Exp. Ther. 336, 693-700.   DOI
18 Castelino, F. V., Seiders, J., Bain, G., Brooks, S. F., King, C. D., Swaney, J. S., Lorrain, D. S., Chun, J., Luster, A. D. and Tager, A. M. (2011) Amelioration of dermal fibrosis by genetic deletion or pharmacologic antagonism of lysophosphatidic acid receptor 1 in a mouse model of scleroderma. Arthritis Rheum. 63, 1405-1415.   DOI
19 Choi, J. W. and Chun, J. (2013) Lysophospholipids and their receptors in the central nervous system. Biochim. Biophys. Acta 1831, 20-32.   DOI
20 Young, K. W., Bootman, M. D., Channing, D. R., Lipp, P., Maycox, P. R., Meakin, J., Challiss, R. A. and Nahorski, S. R. (2000) Lysophosphatidic acid-induced $Ca^{2+}$ mobilization requires intracellular sphingosine 1-phosphate production. Potential involvement of endogenous EDG-4 receptors. J. Biol. Chem. 275, 38532-38539.   DOI
21 Zhang, Y., Chen, Y. C., Krummel, M. F. and Rosen, S. D. (2012) Autotaxin through lysophosphatidic acid stimulates polarization, motility, and transendothelial migration of naive T cells. J. Immunol. 189, 3914-3924.   DOI
22 Cowan, A. K. (2009) Plant growth promotion by 18:0-lyso-phosphatidylethanolamine involves senescence delay. Plant Signal. Behav. 4, 324-327.   DOI