• Title/Summary/Keyword: Lyapunov-based analysis

Search Result 141, Processing Time 0.021 seconds

A Global Regulation Method of Nonlinear Systems with Unbounded Parameters Under State Feedback Frame (비억제 파라미터를 갖는 비선형 시스템의 전역 안정화)

  • Koo, Min-Sung;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.171-176
    • /
    • 2016
  • In this paper, we consider a regulation problem of nonlinear systems under two triangular conditions where there possibly exist unbounded parameters in the systems. We propose a state feedback controller with dynamic gains in order to deal with unbounded parameters based on the condition of the time-varying rate of the growing parameter. The analysis of our control scheme is carried out by Lyapunov stability method. Our control method is verified by simulation results.

A Robust Pitch Control of Wind Turbine Systems (풍력 터빈 시스템의 강인 피치 제어)

  • Han, Myung-Chul;Sung, Chang-Min;Hwang, Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1287-1293
    • /
    • 2013
  • In this paper, we consider variable speed wind turbine systems containing uncertain elements. Though PI controller is generally used for pitch control, it cannot guarantee a stability and performance of the complicated wind turbine systems. A robust pitch control scheme is proposed to regulate the electric power output above the rated wind speed. The pitch controller is designed in order to guarantee uniform boundedness and uniform ultimate boundedness based on the bound values of the set where the uncertainties are laid or moves. In order to verify the proposed control scheme, we present stability analysis and simulation results using Matlab/Simulink.

Non-fragile Guaranteed Cost Control of Uncertain Nonlinear Systems with Time-varying Delays in State and Control Input (시변 시간 지연을 갖는 불확실한 비선형 시스템의 비약성 보장 비용 제어)

  • Kim, Jae-Man;Choi, Yoon-Ho;Park, Jin-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.459-465
    • /
    • 2012
  • In this paper, we present a non-fragile guaranteed cost control design method for uncertain nonlinear systems with time varying delays in state and control input, even though the controller gain is perturbed. The uncertain nonlinear term in the systems is norm bounded and the linear matrix inequality(LMI) optimization method is employed as a stability analysis of the systems. We design a robust controller and show the asymptotical stability of uncertain time-varying systems based on Lyapunov method. Also, we guarantee a specific level of performance of the systems. The simulations are carried out to demonstrate the effectiveness of the proposed method.

Design of a real Time Adaptive Controller for Industrial Robot Using Digital Signal Processor (디지털 신호처리기를 사용한 산업용 로봇의 실시간 적응제어기 설계)

  • 최근국
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.154-161
    • /
    • 1999
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C30) for robotic manipulators to achieve trajectory tracking by the joint angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time-varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

Adaptive Model Reference Control Based on Takagi-Sugeno Fuzzy Models with Applications to Flexible Joint Manipulators

  • Lee, Jongbae;Lim, Joon-hong;Park, Chang-Woo;Kim, Seungho
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.337-346
    • /
    • 2004
  • The control scheme using fuzzy modeling and Parallel Distributed Compensation (PDC) concept is proposed to provide asymptotic tracking of a reference signal for the flexible joint manipulators with uncertain parameters. From Lyapunov stability analysis and simulation results, the developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop multi-input/multi-output system. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal.

CHAOTIC THRESHOLD ANALYSIS OF NONLINEAR VEHICLE SUSPENSION BY USING A NUMERICAL INTEGRAL METHOD

  • Zhuang, D.;Yu, F.;Lin, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • Since it is difficult to analytically express the Melnikov function when a dynamic system possesses multiple saddle fixed points with homoclinic and/or heteroclinic orbits, this paper investigates a vehicle model with nonlinear suspension spring and hysteretic damping element, which exhibits multiple heteroclinic orbits in the unperturbed system. First, an algorithm for Melnikov integrals is developed based on the Melnikov method. And then the amplitude threshold of road excitation at the onset of chaos is determined. By numerical simulation, the existence of chaos in the present system is verified via time history curves, phase portrait plots and $Poincar{\acute{e}}$ maps. Finally, in order to further identify the chaotic motion of the nonlinear system, the maximal Lyapunov exponent is also adopted. The results indicate that the numerical method of estimating chaotic threshold is an effective one to complicated vehicle systems.

Adaptive robust hybrid position/force control for a uncertain robot manipulator

  • Ha, In-Chul;Han, Myung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.426-426
    • /
    • 2000
  • When real robot manipulators arc mathematically modeled, uncertainties are not avoidable. The uncertainties are often nonlinear and time varying, The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance and etc. We proposed a class of robust hybrid position/force control of manipulators and provided the stability analysis in the previous work. In the work, we propose a class of adaptive robust hybrid position/force control of manipulators with bound estimation and the stability based on Lyapunov function is presented. Especially, this controller does not need the information of uncertainty bound. The simulation results are provided to show the effectiveness of the algorithm.

  • PDF

Design and Analysis of Dynamic Positioning System Using a Nonlinear Robust Observer

  • Kim, Myung-Hyun
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.5 no.1
    • /
    • pp.46-52
    • /
    • 2002
  • A robust nonlinear observer, utilizing the sliding mode concept, is developed for the dynamic positioning of ships. The observer provides the estimates of linear velocities of the ship and bias from slowly varying environmental loads. It also filters out wave frequency motion to avoid wear of actuators and excessive fuel consumption. The main advantage of the proposed observer is in its robustness. Especially, the observer structure with a saturation function makes the proposed observer robust against neglected nonlinearties, disturbances and uncertainties. Since the mathematical model of DP ships is difficult to obtain and includes uncertainties and disturbances, it is very important for the observer to be robust. A nonlinear output feedback controller is derives based on the developed observer using the observer backstepping technique, and the global stability of the observer and control law is shown by Lyapunov stability theory.. A set of simulation was carried out to investigate the performance of the proposed observer for dynamic positioning of ships.

  • PDF

Implementation of the Adaptive-Neuro Control of Robot Manipulator Using DSPs(TMS320C50) (DSPs(TMS320C50)를 이용한 로봇 매니퓰레이터의 적응-신경제어기 실현)

  • 정동연;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.256-261
    • /
    • 2002
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique for real-time control of robot system using DSPs.

  • PDF

A Study on the Real Time Adaptive Controller for SCARA Robot Using TMS320C31 Chip (TMS320C31 칩을 사용한 스카라 로봇의 실시간 적응제어데 관한 연구)

  • 김용태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.79-84
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C31) for robotic manipulators to achieve trajectory tracking by the joint angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time-varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF