• Title/Summary/Keyword: Lyapunov stability analysis

Search Result 236, Processing Time 0.029 seconds

Direct Adaptive Fuzzy Control with State Observer for Unknown Nonlinear Systems (상태 관측기를 이용한 미지의 비선형 시스템의 직접 적응 퍼지 제어)

  • Kim, Hyung-Joong;Hwang, Young-Ho;Kim, Eung-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2190-2192
    • /
    • 2003
  • In this paper, a state observer based direct adaptive fuzzy controller for unknown nonlinear dynamical system is presented. The adaptive parameters of the direct adaptive fuzzy controller can be tuned by using a projection algorithm on-line based on the Lyapunov synthesis approach. A maximum control is used to guarantee the robustness of system. A stability analysis of the overall adaptive scheme is discussed based on the sense of Lyapunov. The inverted pendulum simulation example shows that proposed control algorithm can be used for the tracking problem of nonlinear system.

  • PDF

ANALYSIS OF AN SEIQRVS EPIDEMIC DYNAMICS FOR INFECTIOUS VIRAL DISEASE: QUARANTINE AS A CONTROL STRATEGY

  • RAKESH SINGH TOMAR;JOYDIP DHAR;AJAY KUMAR
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.107-121
    • /
    • 2023
  • An epidemic infectious disease model consists of six compartments viz. Susceptible, Exposed, Infected, Quarantine, Recovered, and Virus with nonlinear saturation incidence rate is proposed to know the viral disease dynamics. There exist two biological equilibrium points for the model system. The system's local and global stability is done through Lyapunov's direct method about equilibrium points. The sensitivity analysis has been performed for the basic reproduction number and equilibrium points through the normalized forward sensitivity index. Sensitivity analysis shows that virus growth and quarantine rates are more sensitive parameters. In support of mathematical conclusions, numerical experimentation has been shown.

Robustness Analysis of Predictor Feedback Controller for Discrete-Time Linear Systems with Input Delays (입력지연을 갖는 이산시간 선형시스템을 위한 예측기 피드백 제어기의 강인성 해석)

  • Choi, Joon-Young
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1265-1272
    • /
    • 2019
  • We analyze the robustness of the existing predictor feedback controller for discrete-time linear systems with constant input delays against the structured model uncertainty. By modeling the constant input delay with a first-order PdE (Partial difference Equation), we replace the input delay with the PdE states. By applying a backstepping transformation, we build a target system that enables to construct an explicit Lyapunov function. Constructing the explicit Lyapunov function that covers the entire state variables, we prove the existence of an allowable maximum size of the structured model uncertainty to maintain stability and establish the robustness of the predictor feedback controller. The numerical example demonstrates that the stability of closed-loop system is maintained in the presence of the structured model uncertainty, and verifies the robustness of the predictor feedback controller.

H Fuzzy Control for Discrete-Time Nonlinear Markovian Jump Systems with Time Delay (시간지연을 갖는 이산 비선형 마코비안 점프 시스템의 H 퍼지 제어)

  • Lee, Kap-Rai;Lee, Kyung-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.779-786
    • /
    • 2009
  • This paper deals with $H_{\infty}$ fuzzy control problem of discrete-time nonlinear Markovian jump systems with time delay. The Takgi and Sugeno fuzzy model is employed to represent a delayed nonlinear system that possesses Markovian jump parameters. A stochastic mode dependent Lyapunov function is employed to analyze the stability and $H_{\infty}$ disturbance attenuation performance of the Markovian jump fuzzy system with time delay. Stochastic Lyapunov function is dependent on the operation modes of the system. A sufficient condition for the existence of fuzzy $H_{\infty}$ controller are given in terms of matrix inequalities. Also numerical example is presented to illustrate the efficient of the proposed design methods.

A Study on the Robust Controller in Independent Modal space for Parameter Errors (파라메타 오차에 강인한 독립모달공간 제어기법에 대한 연구)

  • 황재혁;김준수;박대성;박명호
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.595-605
    • /
    • 1996
  • If the control force designed on the basis of the mathematical model with parameter errors is applied to control the actual system, the closed-loop performance of the actual system will be degraded depending on the degree of the errors, In this study, the effect of parameter errors on the robustness of several natural controls has been analyzed and compared. Every asymptoic stability condition for the natural controls has been derived using Lyapunov approach, and the characteristics of the stability conditions has also been compared. The extent of deviation of the closed-loop performance from the designed one for the natural controls is derived using operator techniques, and evaluated by numerical method. It has been found that the optimal control, acceleration feedback control, and acceleration-position feedback control among the considered natural controls would be robust one with respect to the parameter errors.

  • PDF

Delay-Dependent Criterion for Asymptotic Stability of Neutral Systems with Nonlinear Perturbations (비선형 섭동을 갖는 뉴트럴 시스템의 점근 안정을 위한 지연시간 종속 판별식)

  • Park, Ju-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.6
    • /
    • pp.1-6
    • /
    • 2000
  • In this paper, the problem of the stability analysis for linear neutral delay-differential systems with nonlinear perturbations is investigated. Using Lyapunov second method, a new delay-dependent sufficient condition for asymptotic stability of the systems in terms of linear matrix inequalities (LMIs), which can be easily solved by various convex optimization algorithms, is presented. A numerical example is given to illustrate the proposed method.

  • PDF

A Robust Pitch Control of Wind Turbine Systems (풍력 터빈 시스템의 강인 피치 제어)

  • Han, Myung-Chul;Sung, Chang-Min;Hwang, Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1287-1293
    • /
    • 2013
  • In this paper, we consider variable speed wind turbine systems containing uncertain elements. Though PI controller is generally used for pitch control, it cannot guarantee a stability and performance of the complicated wind turbine systems. A robust pitch control scheme is proposed to regulate the electric power output above the rated wind speed. The pitch controller is designed in order to guarantee uniform boundedness and uniform ultimate boundedness based on the bound values of the set where the uncertainties are laid or moves. In order to verify the proposed control scheme, we present stability analysis and simulation results using Matlab/Simulink.

Neural Direct Adaptive Control and Stability Analysis (신경회로망 직접 적응제어 및 안정성 해석)

  • Choi, J.S.;Kim, H.S.;Kim, S.J.;Kwon, O.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1179-1181
    • /
    • 1996
  • In this paper, method for direct adaptive control of discrete nonlinear systems using neural network is presented. Also, the stability problems are investigated in sense of the Lyapunov stability conditions. Through extensive simulation, the SOON is shown to be effective for indirect adaptive control of nonlinear dynamic systems.

  • PDF

NNDI decentralized evolved intelligent stabilization of large-scale systems

  • Chen, Z.Y.;Wang, Ruei-Yuan;Jiang, Rong;Chen, Timothy
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • This article focuses on stability analysis and fuzzy controller synthesis for large neural network (NN) systems consisting of several interconnected subsystems represented by the NN model. Advanced and fuzzy NN differential inclusion (NNDI) for stability based on the developed algorithm with H infinity can be designed based on the evolved biological design. This representation is constructed using sector linearity for NN models. Sector linearity transforms a non-linear model into a linear model based on proposed operations. New sufficient conditions are realized in the form of LMI (linear matrix inequalities) to ensure the asymptotic stability of the trans-Lyapunov function. This transforms the nonlinear model into a linear model based on multiple rules. At last, a numerical case study with simulations is derived as illustration to prove its feasibility in real nonlinear structures.

Heat Load Estimation-Based Switching Explicit Model Predictive Temperature Control for VRF Systems (시스템 에어컨의 온도 제어를 위한 부하 예측 기반 스위칭 모델 예측 제어)

  • Jun-Yeong Kim;S.M. Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.3
    • /
    • pp.123-130
    • /
    • 2024
  • This paper proposes an EMPC (Explicit Model Predictive Controller) for temperature tracking control based on heat load prediction by an ESO (Extended State Observer) for a variable cooling circulation system with multiple indoor units connected to one outdoor unit. In this system, heat transfer and heat loss relative to the input temperature are modeled using system dynamics. Using this model, we design an EMPC based on an ESO that is robust to temperature changes and depends on airflow. To determine the stability of both the controller and the observer, asymptotic stability is verified through Lyapunov stability analysis. Finally, to validate the performance of the proposed controller, simulations are conducted under three scenarios with varying airflow, set temperature, and heat load.