• Title/Summary/Keyword: Lyapunov stability Analysis

Search Result 235, Processing Time 0.028 seconds

A Robust Attitude Controller Design Using Lyapunov Redesign Technique for Spacecraft (Lyapunov 재설계 기법을 이용한 우주비행체 강인 자세제어기 설계)

  • Nam, Heon-Seong;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.313-318
    • /
    • 2002
  • A robust attitude controller using Lyapunov redesign technique for spacecraft is proposed. In this controller, qua- ternion feedback is considered to have the attitude maneuver capability very close to the eigen-axis rotation. The controller consists of three parts: the nominal feedback parts which is a PD-type controller for the nominal system without uncertainties, the additional term compensating for the gyroscopic motion, and the third part for ensuring robustness to uncertainties. Lyapunov stability criteria is applied to stability analysis. The performance of the proposed controller is demonstrated via computer simulation.

ASYMPTOTIC STABILITY OF LINEAR SYSTEM OF NEUTRAL TYPE WITH TIME-VARYING DELAY

  • Park, Ju-H.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.297-303
    • /
    • 2001
  • In this paper, the problem of the stability analysis for a class of linear neutral systems with time-varying delay is investigated. Using the Lyapunov method, a delay-dependent sufficient condition for asymptotic stability of the systems in terms of linear matrix inequalities (LMIs) is presented. The LMIs can be easily solved by various convex optimization algorithms.

GLOBAL STABILITY ANALYSIS FOR A CLASS OF COHEN-GROSSBERG NEURAL NETWORK MODELS

  • Guo, Yingxin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1193-1198
    • /
    • 2012
  • By constructing suitable Lyapunov functionals and combining with matrix inequality technique, a new simple sufficient condition is presented for the global asymptotic stability of the Cohen-Grossberg neural network models. The condition contains and improves some of the previous results in the earlier references.

Robustness analysis of pole assignment in a specified circle for perturbed systems (섭동 시스템에 대한 규정된 원 내로의 극점배치 견실성 해석)

  • Kim, Ga-Gue;Choi, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.78-82
    • /
    • 1995
  • In this paper, we consider the robustness analysis problem in state space models with linear time invariant perturbations. Based upon the discrete-time Lyapunov approach, sufficient conditions are derived for the eigenvalues of perturbed matrix to be located in a circle, and robustness bounds on perturbations are obtained. Spaecially, for the case of a diagonalizable hermitian matrix the bound is given in terms of the nominal matrix without the solution of Lyapunov equation. This robustness analysis takes account not only of stability robustness but also of certain types of performance robustness. For two perturbation classes resulting bounds are shown to be improved over the existing ones. Examples given include comparison of the proposed analysis method with existing one.

  • PDF

Design of the Robust Fuzzy Controller based on Fuzzy Lyapunov Functions (퍼지 리아푸노프 함수 기반 강인한 퍼지 제어기 설계)

  • Kim, Ho-Jun;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.630-636
    • /
    • 2011
  • This paper is concerned with the stability analysis and stabilization for the Takagi-Sugeno(T-S) fuzzy systems with parametric uncertainties. To reduce conservativeness in stability analysis for T-S fuzzy systems, fuzzy Lyapunov functions are used. Stability analysis is performed and robust fuzzy controller is designed for stabilization of the system with parametric uncertainties. The stability and stabilization conditions are formulated in terms of linear matrix inequalities (LMIs). Finally, simulation example is presented to show the effectiveness of the proposed approach.

Improvement of the Robustness Bounds of the Linear Systems with Structured Uncertainties (구조화된 불확실성의 비선형요소를 갖는 선형 시스템의 강인영역 개선)

  • Jo, Jang-Hyen
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.171-179
    • /
    • 2001
  • The purpose of this paper is the derivation and development of the new definitions and methods for the new estimation of robustness for the systems having structured uncertainties. This proposition adopts the theoretical analysis of the Lyapunov direct methods, that is, the sign properties of the Lyapunov function derivative integrated along finite intervals of time, in place of the original method of the sign properties of the time derivative of the Lyapunov function itself. This is the new sufficient criteria to relax the stability condition and is used to generate techniques for the robust design of control systems with structured perturbations. The systems considered are assumed to be nominally linear, with time-variant, nonlinear bounded perturbations. This new techniques demonstrate the improvement of robustness bounds from the numerical results.

  • PDF

Fuzzy Modeling Technique of Nonlinear Dynamical System and Its Stability Analysis (비선형 시스템의 퍼지 모델링 기법과 안정도 해석)

  • So, Myeong Ok;Ryu, Gil Su;Lee, Jun Tak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.101-101
    • /
    • 1996
  • This paper presents the linearized fuzzy modeling technique of nonlinear dynamical system and the stability analysis of fuzzy control system. Firstly, the nonlinear system is partitionized by multiple linear fuzzy subcontrol systems based on fuzzy linguistic variables and fuzzy rules. Secondly, the disturbance adaptaion controllers which guarantee the global asymptotic stability of each fuzzy subsystem by an optimal feedback control law are designed and the stability analysis procedures of the total fuzzy control system using Lyapunov functions and eigenvalues are discussed in detail through a given illustrative example.

Fuzzy Modeling Technique of Nonlinear Dynamic System and Its Stability Analysis (비선형 시스템의 퍼지 모델링 기법과 안정도 해석)

  • 소명옥;류길수;이준탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.33-39
    • /
    • 1996
  • This paper presents the linearized fuzzy modeling technique of nonlinear dynamical system and the stability analysis of fuzzy control system. Firstly, the nonlinear system is partitionized by multiple linear fuzzy subcontrol systems based on fuzzy linguistic variables and fuzzy rules. Secondly, the disturbance adaptaion controllers which guarantee the global asymptotic stability of each fuzzy subsystem by an optimal feedback control law are designed and the stability analysis procedures of the total fuzzy control system using Lyapunov functions and eigenvalues are discussed in detail through a given illustrative example.

  • PDF

Study of the Robustness Bounds with Lyapunoved-Based Stability Concept

  • Jo, Jang-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.700-705
    • /
    • 2005
  • The purpose of this project is the derivation and development of techniques for the new estimation of robustness for the systems having uncertainties. The basic ideas to analyze the system which is the originally nonlinear is Lyapunov direct theorems. The nonlinear systems have various forms of terms inside the system equations and this investigation is confined in the form of bounded uncertainties. Bounded means the uncertainties are with same positive/negative range. The number of uncertainties will be the degree of freedoms in the calculation of the stability region. This is so called the robustness bounds. This proposition adopts the theoretical analysis of the Lyapunov direct methods, that is, the sign properties of the Lyapunov function derivative integrated along finite intervals of time, in place of the original method of the sign properties of the time derivative of the Lyapunov function itself. This is the new sufficient criteria to relax the stability condition and is used to generate techniques for the robust design of control systems with structured perturbations. Using this relaxing stability conditions, the selection of Lyapunov candidate function is of various forms. In this paper, the quadratic form is selected. this generated techniques has been demonstrated by recent research interest in the area of robust control design and confirms that estimation of robustness bounds will be improved upon those obtained by results of the original Lyapunov method. In this paper, the symbolic algebraic procedures are utilized and the calculating errors are reduced in the numerical procedures. The application of numerical procedures can prove the improvements in estimations of robustness for one-and more structured perturbations. The applicable systems is assumed to be linear with time-varying with nonlinear bounded perturbations. This new techniques will be extended to other nonlinear systems with various forms of uncertainties, especially in the nonlinear case of the unstructured perturbations and also with various control method.

  • PDF

Nonlinear Adaptive Control based on Lyapunov Analysis: Overview and Survey (리아프노브 분석법 기반 비선형 적응제어 개요 및 연구동향 조사)

  • Park, Jin Bae;Lee, Jae Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.261-269
    • /
    • 2014
  • This paper provides an overview of the basics and recent studies of Lyapunov-based nonlinear adaptive control, the aim of which is to improve or maintain the performance and stability of the closed-loop system by cancelling out the presumable uncertainties in the nonlinear system dynamics. The design principles are essentially based on Lyapunov's direct method. In this survey, we provide a comprehensive overview of Lyapunov-based nonlinear adaptive control techniques with simplified effective design examples, which are to be elaborated as related recent results are gradually shown. The scope of the survey contains research on singularity problems in adaptive control, the techniques to deal with linearly and nonlinearly parameterized uncertainties, robust neuro-adaptive control, and adaptive control methodologies combined with various nonlinear control techniques such as sliding-mode control, back-stepping, dynamic surface control, and optimal/$H_{\infty}$ control.