• Title/Summary/Keyword: Lyapunov optimization

Search Result 77, Processing Time 0.027 seconds

Robust compensator design for parametric uncertain systems by separated optimizations (분리최적화 기법을 이용한 강인제어기 설계)

  • 김경수;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.589-592
    • /
    • 1996
  • It is well known that robust compensators designed by the block-diagonal Lyapunov function approaches are conservative while they are popular in practice because of their computational easiness. In this note, we develop a systematized version of conventional block-diagonal Lyapunov function approaches by deriving two separated optimizations based on the guaranteed cost control method. The proposed method generates reasonable robust compensators in practice.

  • PDF

Robust Delay-dependent Stability Criterion for Uncertain Networked Control System (불확실성이 존재하는 네트워크 제어시스템의 강인 지연의존 안정성 판별법)

  • Park, Myeongjin;Kwon, Ohmin;Park, Ju H.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.2
    • /
    • pp.97-102
    • /
    • 2009
  • In this paper, the problem of stability analysis for networked control systems with norm-bounded parameter uncertainties is investigated. By construction Lyapunov's functional, a new delay-dependent stability criterion for uncertain networked control system is established in terms of LMIs (linear matrix inequalities) which can be easily by various convex optimization algorithms. One numerical example is included to show the effectiveness of proposed criterion.

  • PDF

Swing up Control for a rotary pendulum with restricted rotation range (회전변위 제약을 갖는 회진형 도립진자의 스윙업 제어)

  • Oh, Jang-Jin;Lee, Young-Sam
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.133-134
    • /
    • 2007
  • A swing-up control strategy is suggested for a rotary inverted pendulum with restricted rotation range. In order to take the rotation range limitation into account, a new Lyapunov function used for energy-based control is proposed a control strategy is derived from the Lyapunov function. Futhermore, optimization-base parameter estimation is adopted to get an exact mathematical model for the pendulum. Simulation results show that the proposed control strategy swings up the rotary inverted pendulum efficiently.

  • PDF

On Delay-Dependent Stability of Neutral Systems with Mixed Time-Varying Delay Arguments

  • Park, H.J.
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.39-42
    • /
    • 2002
  • This paper focuses on the asymptotic stability of a class of neutral linear systems with mixed time-varying delay arguments. Using the Lyapunov method, a delay-dependent stability criterion to guarantee the asymptotic stability for the systems is derived in terms of linear matrix inequalities (LMIs). The LMIs can be easily solved by various convex optimization algorithms. Two numerical examples are given to illustrate the proposed methods.

  • PDF

Optimization of Dynamic Neural Networks Considering Stability and Design of Controller for Nonlinear Systems (안정성을 고려한 동적 신경망의 최적화와 비선형 시스템 제어기 설계)

  • 유동완;전순용;서보혁
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.189-199
    • /
    • 1999
  • This paper presents an optimization algorithm for a stable Self Dynamic Neural Network(SDNN) using genetic algorithm. Optimized SDNN is applied to a problem of controlling nonlinear dynamical systems. SDNN is dynamic mapping and is better suited for dynamical systems than static forward neural network. The real-time implementation is very important, and thus the neuro controller also needs to be designed such that it converges with a relatively small number of training cycles. SDW has considerably fewer weights than DNN. Since there is no interlink among the hidden layer. The object of proposed algorithm is that the number of self dynamic neuron node and the gradient of activation functions are simultaneously optimized by genetic algorithms. To guarantee convergence, an analytic method based on the Lyapunov function is used to find a stable learning for the SDNN. The ability and effectiveness of identifying and controlling a nonlinear dynamic system using the proposed optimized SDNN considering stability is demonstrated by case studies.

  • PDF

Multi-Objective Controller Design using a Rank-Constrained Linear Matrix Inequality Method (계수조건부 LMI를 이용한 다목적 제어기 설계)

  • Kim, Seog-Joo;Kim, Jong-Moon;Cheon, Jong-Min;Kwon, Soon-Mam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.67-71
    • /
    • 2009
  • This paper presents a rank-constrained linear matrix inequality (LMI) approach to the design of a multi-objective controller such as $H_2/H_{\infty}$ control. Multi-objective control is formulated as an LMI optimization problem with a nonconvex rank condition, which is imposed on the controller gain matirx not Lyapunov matrices. With this rank-constrained formulation, we can expect to reduce conservatism because we can use separate Lyapunov matrices for different control objectives. An iterative penalty method is applied to solve this rank-constrained LMI optimization problem. Numerical experiments are performed to illustrate the proposed method.

Combined Service Subscription and Delivery Energy-Efficient Scheduling in Mobile Cloud Computing

  • Liu, Xing;Yuan, Chaowei;Peng, Enda;Yang, Zhen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1587-1605
    • /
    • 2015
  • Mobile cloud computing (MCC) combines mobile Internet and cloud computing to improve the performance of applications. In MCC, the data processing and storage for mobile devices (MDs) is provided on the remote cloud. However, MCC faces the problem of energy efficiency caused by randomly varying channels. In this paper, by introducing the Lyapunov optimization method, we propose a combined service subscription and delivery (CSSD) algorithm that can guide the users to subscribe to services reasonably. This algorithm can also determine whether to deliver the data and to whom data is sent in the current time unit based on the queue backlog and the channel state. Numerical results validate the correctness and effectiveness of our proposed CSSD algorithm.

Output feedback model predictive control for Wiener model with parameter dependent Lyapunov function

  • Yoo, Woo-Jong;Ji, Dae-Hyun;Lee, Sang-Moon;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.685-689
    • /
    • 2005
  • In this paper, we consider a robust output feedback model predictive controller(MPC) design for Wiener model. Nonlinearities that couldn't be represented in static nonlinearity block of Wiener model are regarded as uncertainties in linear block. An dynamic output feedback controller design method is presented for Wiener MPC. According to MPC algorithm, the control law is computed based on linear matrix inequality(LMI)at each sampling time by solving convex optimization. Also, a new parameter dependent Lyapunov function is proposed to get a less conservative condition. The results are illustrated with numerical example.

  • PDF

A New Augmented Lyapunov Functional Approach to Robust Stability Criteria for Uncertain Fuzzy Neural Networks with Time-varying Delays (시변 지연이 존재하는 불확실 퍼지 뉴럴 네트워크의 강인 안정성 판별법에 대한 새로운 리아프노프 함수법)

  • Kwon, Oh-Min;Park, Myeong-Jin;Park, Ju-Hyun;Lee, Sang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2119-2130
    • /
    • 2011
  • This paper proposes new delay-dependent robust stability criteria for neural networks with time-varying delays. By construction of a suitable Lyapunov-Krasovskii's (L-K) functional and use of Finsler's lemma, new stability criteria for the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.

Electricity Cost Minimization for Delay-tolerant Basestation Powered by Heterogeneous Energy Source

  • Deng, Qingyong;Li, Xueming;Li, Zhetao;Liu, Anfeng;Choi, Young-june
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5712-5728
    • /
    • 2017
  • Recently, there are many studies, that considering green wireless cellular networks, have taken the energy consumption of the base station (BS) into consideration. In this work, we first introduce an energy consumption model of multi-mode sharing BS powered by multiple energy sources including renewable energy, local storage and power grid. Then communication load requests of the BS are transformed to energy demand queues, and battery energy level and worst-case delay constraints are considered into the virtual queue to ensure the network QoS when our objective is to minimize the long term electricity cost of BSs. Lyapunov optimization method is applied to work out the optimization objective without knowing the future information of the communication load, real-time electricity market price and renewable energy availability. Finally, linear programming is used, and the corresponding energy efficient scheduling policy is obtained. The performance analysis of our proposed online algorithm based on real-world traces demonstrates that it can greatly reduce one day's electricity cost of individual BS.