• 제목/요약/키워드: Lyapunov Theory

검색결과 305건 처리시간 0.021초

Derivation of a Group of Lyapunov Functions reflecting Damping Effects and its Application

  • Moon, Young-Hyun;Park, Byoung-Kon;Cho, Byoung-Hoon;Roh, Tae-Hoon
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권3호
    • /
    • pp.322-329
    • /
    • 1998
  • Stability analysis of nonlinear systems is mostly based on the Lyapunov stability theory. The well-known Lyapunov function method provides precise and rigorous theoretical backgrounds. However, the conventional approach to direct stability analysis has been performed without taking account of damping effects, which is pointed as a minor but crucial drawback. For accurate has been performed without taking account of damping effects, which is pointed as a minor but crucial drawback. For accurate stability analysis of nonlinear systems, it is required to take the damping effects into account. This paper presents a new method to derive a group of Lyapunov functions to reflect the damping effects by considering the integral relationships of the system governing equations. A systematical approach is developed to convert a part of damping loss into some appropriate system energy terms. Examples show that the proposed method remarkably improves the estimation of the region of attraction compared considering damping effects. The proposed method can be utilized as a useful tol to determine the region of attraction.

  • PDF

Lyapunov 강인 안정성 조건을 이용한 강인 최적 뱅뱅 제어기 (Robust Optimal Bang-Bang Controller Using Lyapunov Robust Stability Condition)

  • 박영진;문석준;박윤식;임채욱
    • 제어로봇시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.411-418
    • /
    • 2006
  • There are mainly two types of bang-bang controllers for nominal linear time-invariant (LTI) system. Optimal bang-bang controller is designed based on optimal control theory and suboptimal bang-bang controller is obtained by using Lyapunov stability condition. In this paper, the suboptimal bang-bang control method is extended to LTI system involving both control input saturation and structured real parameter uncertainties by using Lyapunov robust stability condition. Two robust optimal bang-bang controllers are derived by minimizing the time derivative of Lyapunov function subjected to the limit of control input. The one is developed based on the classical quadratic stability(QS), and the other is developed based on the affine quadratic stability(AQS). And characteristics of the two controllers are compared. Especially, bounds of parameter uncertainties which theoretically guarantee robust stability of the two controllers are compared quantitatively for 1DOF vibrating system. Moreover, the validity of robust optimal bang-bang controller based on the AQS is shown through numerical simulations for this system.

휠 슬립 제어기 및 최적 슬립 결정 알고리즘을 이용한 차량의 최대 제동력 제어 (Maximum Braking Force Control Using Wheel Slip Controller and Optimal Target Slip Assignment Algorithm in Vehicles)

  • 홍대건;황인용;선우명호;허건수
    • 대한기계학회논문집A
    • /
    • 제30권3호
    • /
    • pp.295-301
    • /
    • 2006
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS systems. In order to achieve the superior braking performance through the wheel-slip control, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance, stability enhancement, etc. In this paper, a robust wheel slip controller is developed based on the adaptive sliding mode control method and an optimal target slip assignment algorithm. An adaptive law is formulated to estimate the longitudinal braking force in real-time. The wheel slip controller is designed using the Lyapunov stability theory and considering the error bounds in estimating the braking force and the brake disk-pad friction coefficient. The target slip assignment algorithm is developed for the maximum braking force and searches the optimal target slip value based on the estimated braking force. The performance of the proposed wheel-slip control system is verified In simulations and demonstrates the effectiveness of the wheel slip control in various road conditions.

Motion Control of Omnidirectional Mobile Platform for Path Following Using Backstepping Technique

  • Dinh, Viet-Tuan;Thinh, Doan-Phuc;Hoang, Giang;Kim, Hak-Kyeong;Oh, Sea-June;Kim, Sang-Bong
    • 한국해양공학회지
    • /
    • 제25권5호
    • /
    • pp.1-8
    • /
    • 2011
  • This paper proposes a controller design for an omnidirectional mobile platform (OMP) with three wheels using backstepping control. A kinematic model and dynamic model of the system are presented. Based on the dynamic modeling, a backstepping controller is designed to stabilize the OMP when following a desired path. The controller is designed based on a backstepping control theory. It includes two steps: first, a virtual state and a stability function are introduced. Second, Lyapunov functions for the system are chosen and an equation for the virtual control that makes the system stabile is obtained. The system stability is guaranteed by the Lyapunov stability theory. The simulation and experimental results are presented to demonstrate the effectiveness of the proposed controller.

CHAOS AND LYAPUNOV EXPONENT

  • Yu, Se-Ra;Kim, Yon-Mi
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제7권2호
    • /
    • pp.87-100
    • /
    • 2000
  • In this paper, we try to approach chasos with numerical method. After investigating nonlinear dynamcis (chaos) theory, we introduce Lyapunov exponent as chaos\`s index. To look into the existence of chaos in 2-dimensional difference equation we computes Lypunov exponent and examine the various behaviors of solutions by difurcation map.

  • PDF

견실한 비선형 마찰보상 이산제어 - 이론 (Robust Digital Nonlinear Friction Compensation - Theory)

  • 강민식;김창제
    • 한국정밀공학회지
    • /
    • 제14권4호
    • /
    • pp.88-96
    • /
    • 1997
  • This paper suggests a new non-linear friction compensation for digital control systems. This control adopts a hysteresis nonlinear element which can introduce the phase lead of the control system to compensate the phase delay comes from the inherent time delay of a digital control. A proper Lyapunov function is selected and the Lyapunov direct method is used to prove the asymptotic stability of the suggested control.

  • PDF

선형/비선형 슬라이딩 패치 및 스턱현상과 그 응용 (Linear/Nonlinear Sliding Patch and Stuck Phenomena and Applications of Linear/Nonlinear Sliding Patch and Stuck)

  • 김진환;함운철
    • 제어로봇시스템학회논문지
    • /
    • 제6권7호
    • /
    • pp.523-528
    • /
    • 2000
  • In this short note the characteristics of a nonlinear system of which the state trajectories are oscillating in the phase plane are overviewed. The physical concept of stuck and sliding patch phenomena are also introduced by adding some switching functions and their stability on the sliding patches are analyzed by using the Lyapunov stability theory and Frobenius theorem.

  • PDF

시변 지연이 존재하는 불확실 스토캐스틱 시스템의 지연의존 안정성 (New Delay-dependent Stability Criteria for Uncertain Stochastic Systems with Time-varying Delays)

  • 권오민;박주현;이상문
    • 전기학회논문지
    • /
    • 제58권11호
    • /
    • pp.2261-2265
    • /
    • 2009
  • In this paper, the problem of delay-dependent stability of uncertain stochastic systems with time-varying delay is considered. The uncertainties are assumed to be norm-bounded. Based on the Lyapunov stability theory, new delay-dependent stability criteria for the system are derived in terms of LMI(linear matrix inequality). Two numerical examples are given to show the effectiveness of proposed method.

Robust Adaptive Fuzzy Observer Based Synchronization of Chaotic Systems

  • Hyun, Chang-Ho;Kim, Eun-Tai;Park, Mi-Gnon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.341-344
    • /
    • 2007
  • This paper proposes an alternative robust adaptive high-gain fuzzy observer design scheme and its application to synchronization of chaotic systems. The structure of the proposed observer is represented by Takagi-Sugeno fuzzy model and has the integrator of the estimation error. This improves the performance of high-gain observer and makes the proposed observer robust against noisy measurements, uncertainties and parameter perturbations as well. Using Lyapunov stability theory, an adaptive law is derived and the stability of the proposed observer is analyzed. Some simulation result is given to present the validity of theoretical derivations and the performance of the proposed observer.

  • PDF