• Title/Summary/Keyword: Lyapunov Stability Theory

Search Result 236, Processing Time 0.044 seconds

Robust Stable Conditions Based on the Quadratic Form Lyapunov Function (2차 형식 Lyapunov 함수에 기초한 강인한 안정조건)

  • Lee, Dong-Cheol;Bae, Jong-Il;Jo, Bong-Kwan;Bae, Chul-Min
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2212-2214
    • /
    • 2004
  • Robust stable analysis with the system bounded parameteric variation is very important among the various control theory. This study is to investigate the robust stable conditions using the quadratic form Lyapunov function in which the coefficient matrix is affined linear system. The quadratic stability using the quadratic form Lyapunov function is not investigated yet. The Lyapunov unction is robust stable not to be dependent by the variable parameters, which means that the Lyapunov function is conservative. We suggest the robust stable conditions in the Lyapunov function in which the variable parameters are dependent in order to reduce the conservativeness of quadratic stability.

  • PDF

Derivation of a group of lyapunov functions associated with the system energy

  • Moon, Young-Hyun;Kim, Young-Jin;Ko, Kwang-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.518-521
    • /
    • 1994
  • Most of the theorems of nonlinear stability is based on the Lyapunov stability theory. The Lyapunov function method is most well-known and provides precise and rigorous theoretical backgrounds. However, the conventional approach to direct stability analysis has been performed without taking account of damping effects. For accurate stability analysis of nonlinear systems, the damping effects should be considered. This paper presents a new method to derive a group of Lyapunov functions to reflect the damping effects by considering the integral relationships of the system governing equations.

  • PDF

Derivation of a Group of Lyapunov Functions reflecting Damping Effects and its Application

  • Moon, Young-Hyun;Park, Byoung-Kon;Cho, Byoung-Hoon;Roh, Tae-Hoon
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.3
    • /
    • pp.322-329
    • /
    • 1998
  • Stability analysis of nonlinear systems is mostly based on the Lyapunov stability theory. The well-known Lyapunov function method provides precise and rigorous theoretical backgrounds. However, the conventional approach to direct stability analysis has been performed without taking account of damping effects, which is pointed as a minor but crucial drawback. For accurate has been performed without taking account of damping effects, which is pointed as a minor but crucial drawback. For accurate stability analysis of nonlinear systems, it is required to take the damping effects into account. This paper presents a new method to derive a group of Lyapunov functions to reflect the damping effects by considering the integral relationships of the system governing equations. A systematical approach is developed to convert a part of damping loss into some appropriate system energy terms. Examples show that the proposed method remarkably improves the estimation of the region of attraction compared considering damping effects. The proposed method can be utilized as a useful tol to determine the region of attraction.

  • PDF

New Delay-dependent Stability Criteria for Uncertain Stochastic Systems with Time-varying Delays (시변 지연이 존재하는 불확실 스토캐스틱 시스템의 지연의존 안정성)

  • Kwon, Oh-Min;Park, Ju-Hyun;Lee, Sang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2261-2265
    • /
    • 2009
  • In this paper, the problem of delay-dependent stability of uncertain stochastic systems with time-varying delay is considered. The uncertainties are assumed to be norm-bounded. Based on the Lyapunov stability theory, new delay-dependent stability criteria for the system are derived in terms of LMI(linear matrix inequality). Two numerical examples are given to show the effectiveness of proposed method.

Application of Lyapunov Theory and Fuzzy Logic to Control Shunt FACTS Devices for Enhancing Transient Stability in Multimachine System

  • Kumkratug, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.672-680
    • /
    • 2012
  • This paper proposes the control strategy of the shunt Flexible AC Transmission System (FACTS) devices to improve transient stability in multimachine power system. The multimachine power system has high nonlinear response after severe disturbance. The concept of Lyapunov energy function is applied to derive nonlinear control strategy and it was found that the time derivative of line voltage is not only can apply to control the shunt FACTS devices in multimachine system but also is locally measurable signal. The fuzzy logic control is also applied to overcome the uncertainty of various disturbances in multimachine power system. This paper presents the method of investigating the effect of the shunt FACTS devices on transient stability improvement. The proposed control strategy and the method of simulation are tested on the new England power system. It was found that the shunt FACTS devices based on the proposed nonlinear control strategy can improve transient stability of multimachine power system.

A VSMFC Design Method Using the Stability Theory of Lyapunov (Lyapunov 안정도 이론을 이용한 가변구조모델추종제어기 설계방법)

  • 안수관;배준경;박종국
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.12
    • /
    • pp.983-994
    • /
    • 1989
  • This paper presents a new variable structure model following control algorithm for control of manipulators. The reference model is a simple double integrators and the acceleration input for the robot manipulator consists of a proportional and derivative controller for the purpose of trajectory tracking. The control algorithm is derived by using Lyapunov stability theory instead of S.S < O, as is usual in the current VSS controller design. This proposed control algorithm does not require good knowledge of the parameter in the inertia matrix and is easily extendable to robot manipulators with a higher number of links. Also, the new algorithm is computationally fast because of not requiring the matrix inversion. The computer simulation was carried out to evaluate the performance of the proposed VSMFC.

  • PDF

Design of Unknown Input Observer for Linear Time-delay Systems

  • Fu, Yan-Ming;Duan, Guang-Ren;Song, Shen-Min
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.530-535
    • /
    • 2004
  • This paper deals with the unknown input observer (UIO) design problem for a class of linear time-delay systems. A case in which the observer error can completely be decoupled from an unknown input is treated. Necessary and sufficient conditions for the existences of such observers are present. Based on Lyapunov stability theory, thedesign of the observer with internal delay is formulated in terms of linear matrix inequalities (LMI). The design of the observer without internal delay is turned into a stabilization problem in linear systems. Two design algorithms of UIO are proposed. The effect of the proposed approach is illustrated by two numerical examples.

Design of a robust $H_{\infty}$ controller with regional stability constraints for uncertain linear systems (불확실한 선형 시스템의 지역 안정 제한 조건을 가진 강인한 $H_{\infty}$제어기의 설계)

  • 이문노;문정호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.747-750
    • /
    • 1996
  • This paper considers the problem of robust H$_{\infty}$ control with regional stability constraints via output feedback to assure robust performance for uncertain linear systems. A robust H$_{\infty}$ control problem and the generalized Lyapunov theory are introduced for dealing with the problem, The output feedback H$_{\infty}$ controller makes the controlled outputs settle within a given bound and the control input not to be saturated. The regional stability constraints problem for uncertain systems can be reduced to the problem for the nominal systems by finding sufficient bounds of variations of the closed-loop poles due to modeling uncertainties. A controller design procedure is established using the Lagrange multiplier method. The controller design technique was illustrated on the track-following system of a optical disk drive.ve.

  • PDF

A Family of a Decentralized Adaptive Control for Robotic Manipulators (로봇 매니퓰레이터의 분산 적응제어군)

  • Shin, Kyu-Hyeon;Lee, Yong-Yeun;Lee, Soo-Han
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.737-742
    • /
    • 2004
  • In this paper, a family of decentralized adaptive controller is proposed to control robot manipulators which are governed by highly nonlinear dynamic equations. The controller is computationally efficient since it does not require mathematical model or parameter values of the manipulators. The stability of the manipulators with the controller is proved by Lyapunov theory. The results of numerical simulations show that the system is stable, and has excellent trajectory tracking performance.

  • PDF