• Title/Summary/Keyword: Lyapunov Stability Theory

Search Result 236, Processing Time 0.026 seconds

GLOBAL ANALYSIS FOR A DELAY-DISTRIBUTED VIRAL INFECTION MODEL WITH ANTIBODIES AND GENERAL NONLINEAR INCIDENCE RATE

  • Elaiw, A.M.;Alshamrani, N.H.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.4
    • /
    • pp.317-335
    • /
    • 2014
  • In this work, we investigate the global stability analysis of a viral infection model with antibody immune response. The incidence rate is given by a general function of the populations of the uninfected target cells, infected cells and free viruses. The model has been incorporated with two types of intracellular distributed time delays to describe the time required for viral contacting an uninfected cell and releasing new infectious viruses. We have established a set of conditions on the general incidence rate function and determined two threshold parameters $R_0$ (the basic infection reproduction number) and $R_1$ (the antibody immune response activation number) which are sufficient to determine the global dynamics of the model. The global asymptotic stability of the equilibria of the model has been proven by using Lyapunov theory and applying LaSalle's invariance principle.

AN ASYMPTOTIC STABILITY INVOLVING COLLISION AND AVOIDANCE

  • Ha, Jun-Hong;Shim, Jae-Dong
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.829-840
    • /
    • 2001
  • Generally it is not easy task whether the stable systems governed by nonlinear ordinary differential equations are asymptotically stable or not. This problem often appears in studying a collision and avoidance control problem based on the stability theory. In this paper we devoted to finding conditions that the stable system obtained from the collision and avoidance control problem is asymptotically stable.

Stabilizing Control of Discrete-Time Uncertain Systems (이산시간 불확정 시스템의 안정화 제어)

  • Lee, Jung-Moon
    • Journal of Industrial Technology
    • /
    • v.10
    • /
    • pp.3-8
    • /
    • 1990
  • This paper presents a linear state feedback control approach to the stabilization of discrete-time uncertain systems with bounded uncertain parameters. The approach is based on the LQ(linear quadratic) regulator theory and Lyapunov's stability analysis. Asymptotically stable behavior is guaranteed in the presence of parameter uncertainties, and the upper bound of the performance index is determined.

  • PDF

On $\phi_0-boundedness$ for the comparison differential system

  • An Jeong Hyang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.4
    • /
    • pp.75-79
    • /
    • 2004
  • We investigate various $\phi_0-boundedness$ and $\phi_0-Lagrange$ stability of the trivial solution of comparison differential system. We also investigated the corresponding boundedness concepts of the trivial solution of the differential system using the theory of differential inequalities through cones and the method of cone valued Lyapunov functions.

  • PDF

EXISTENCE AND GLOBAL EXPONENTIAL STABILITY OF A PERIODIC SOLUTION TO DISCRETE-TIME COHEN-GROSSBERG BAM NEURAL NETWORKS WITH DELAYS

  • Zhang, Zhengqiu;Wang, Liping
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.727-747
    • /
    • 2011
  • By employing coincidence degree theory and using Halanay-type inequality technique, a sufficient condition is given to guarantee the existence and global exponential stability of periodic solutions for the two-dimensional discrete-time Cohen-Grossberg BAM neural networks. Compared with the results in existing papers, in our result on the existence of periodic solution, the boundedness conditions on the activation are replaced with global Lipschitz conditions. In our result on the existence and global exponential stability of periodic solution, the assumptions in existing papers that the value of activation functions at zero is zero are removed.

Robust Adaptive Control of 3D Crane Systems with Uncertainty (불확실성 요소를 갖는 3D 크레인 시스템의 강인적응제어)

  • Jeong, Sang-Chul;Kim, Dong-Won;Lee, Hyung-Ki;Cho, Hyun-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.102-108
    • /
    • 2008
  • This paper presents robust and adaptive control method for complicated three dimensional crane systems with uncertain effect. We consider an overhead crane system in which a trolly located on its top is moved to x- and y-axis independently. We first approximate the complicated crane model through linearization approach to simply construct a PD control and then design an adaptive control system for compensating modeling error and control deviation which is feasibly occurred due to system perturbation in practice. An adaptive control scheme is analytically derived using Lyapunov stability theory for a given bound of system perturbation. We accomplish numerical simulation for evaluation of the proposed control system and demonstrate its superiority comparing with the traditional control strategy.

Smart modified repetitive-control design for nonlinear structure with tuned mass damper

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.107-114
    • /
    • 2023
  • A new intelligent adaptive control scheme was proposed that combines observer disturbance-based adaptive control and fuzzy adaptive control for a composite structure with a mass-adjustable damper. The most important advantage is that the control structures do not need to know the uncertainty limits and the interference effect is eliminated. Three adjustable parameters in LMI are used to control the gain of the 2D fuzzy control. Binary performance indices with weighted matrices are constructed to separately evaluate validation and training performance using the revalidation learning function. Determining the appropriate weight matrix balances control and learning efficiency and prevents large gains in control. It is proved that the stability of the control system can be ensured by a linear matrix theory of equality based on Lyapunov's theory. Simulation results show that the multilevel simulation approach combines accuracy with high computational efficiency. The M-TMD system, by slightly reducing critical joint load amplitudes, can significantly improve the overall response of an uncontrolled structure.

Adaptive State Feedback Control System of DC Motors with Periodic Random Disturbance (주기적 확률외란을 갖는 DC 전동기의 적응형 상태궤환 제어시스템)

  • Jeong, Sang-Chul;Kim, Jun-Su;Cho, Hyun-Cheol;Lee, Hyung-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1036-1041
    • /
    • 2008
  • Periodic disturbance is practically occurred in several engineering applications, especially in data storage systems. However, recently addressed controls for such problem were mostly dealt with its deterministic nature, which is rarely practical in real-time implementation. We present an adaptive control approach for DC motor systems with periodic stochastic disturbance whose frequency and magnitude are both random variables. We establish adaptive state feedback control which is linearly composed of nominal and corrective control parameter matrices. The former is derived from a nominal system model voiding disturbance and the latter is constructed from a disturbed system model by using Lyapunov stability theory. We carry out computer simulation to evaluate the proposed control methodology and compare to the recently addressed control method to demonstrate its superiority.

ATTRACTORS OF LOCAL SEMIFLOWS ON TOPOLOGICAL SPACES

  • Li, Desheng;Wang, Jintao;Xiong, Youbing
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.773-791
    • /
    • 2017
  • In this paper we introduce a notion of an attractor for local semiflows on topological spaces, which in some cases seems to be more suitable than the existing ones in the literature. Based on this notion we develop a basic attractor theory on topological spaces under appropriate separation axioms. First, we discuss fundamental properties of attractors such as maximality and stability and establish some existence results. Then, we give a converse Lyapunov theorem. Finally, the Morse decomposition of attractors is also addressed.

Adaptive Sliding Mode Control for Compensation of Uncertainty in Feedback Linearized Skid-to-Turn (STT) Missiles (궤환선형화된 STT 미사일의 불확실성 보상을 위한 적응 슬라이딩 모드 제어)

  • 김민수;좌동경;최진영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.267-274
    • /
    • 1999
  • This paper proposes an adaptive sliding mode control scheme for an autopilot design of Skid-to-Turn (STT) missiles. The feedback linearization controller eliminates nonlinear terms in STT dynamics and makes the entire system linear. But the modeling errors in dynamics and the external disturbances exert bad influence on the performance of the feedback linearization controller. To handle these uncertainties, an adaptive control scheme is developed, where a bound of the uncertainties is estimated by an adaptive law based on a sliding surface. The asymptotic output tracking is proved by using the Lyapunov stability theory. Simulations for STT missiles illustrate the validity of the proposed scheme.

  • PDF