
J. Korean Math. Soc. 48 (2011), No. 4, pp. 727–747

DOI 10.4134/JKMS.2011.48.4.727

EXISTENCE AND GLOBAL EXPONENTIAL STABILITY

OF A PERIODIC SOLUTION TO DISCRETE-TIME

COHEN-GROSSBERG BAM NEURAL NETWORKS

WITH DELAYS

Zhengqiu Zhang and Liping Wang

Abstract. By employing coincidence degree theory and using Halanay-
type inequality technique, a sufficient condition is given to guarantee the
existence and global exponential stability of periodic solutions for the
two-dimensional discrete-time Cohen-Grossberg BAM neural networks.

Compared with the results in existing papers, in our result on the exis-
tence of periodic solution, the boundedness conditions on the activation
are replaced with global Lipschitz conditions. In our result on the exis-
tence and global exponential stability of periodic solution, the assump-

tions in existing papers that the value of activation functions at zero is
zero are removed.

1. Introduction

Since 1983, Cohen and Grossberg [2] constructed a kind of simplified neural
networks which are now called Cohen-Grossberg neural networks (CGNNS),
they have received increasing interesting due to their promising potential ap-
plications in many fields such as pattern recognition, parallel computing, as-
sociative memory, and combinatorial optimization. Such applications heavily
depend on the dynamical behaviors. Thus, the qualitative analysis of the dy-
namical behaviors is a necessary step for the practical design and application
of neural networks.

The stability of Cohen-Grossberg neural network with or without delays has
been widely studied by many researchers, and various interesting result have
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been reported ([2]-[25]). As is well known, the studies on neural dynamical sys-
tem not only involve a discussion of stability properties, but also involve other
dynamic behavior, such as periodic oscillatory behavior, chaos and bifurcation.
In many applications, the periodic oscillatory behavior is of great interest, it
has been found applications in learning theory [39] which is motivated by the
fact that learning usually requires repetition. Hence, it is of prime importance
to study periodic oscillatory solutions of neural networks. Recent years, a few
of authors discussed the existence and stability of periodic solution to two-
dimensional Cohen-Grossberg neural networks with delays [3, 37]. However,
the existence and stability result of periodic solution to two-dimensional dis-
crete Cohen-Grossberg neural networks with delays have been not found in the
present literature. On the other hand, recent years, the stability of equilibrium
point and periodic solutions for continuous-time and discrete time BAM neural
networks has also be widely investigated and many interesting results have be
obtained, for example, see [35]-[45].

Motivated by above works, in this paper, we are concerned with the exis-
tence and stability of periodic solution to two-dimensional discrete-time Cohen-
Grossberg BAM neural networks with delays.

Recently, some authors studied dynamical behavior for discrete-time ana-
logues of neural networks by semi-discrete method, see [21, 23, 22, 14, 30].
Just as said in [21], semi-discrete method has more advantages than Euler
method in preserving the dynamics of continuous model. Different from those
in neural networks models in [21, 23, 22, 14], in Cohen-Grossberg neural net-
works, the amplification function is nonlinear, which brings some difficulties in
using semi-discrete method to discrete Cohen-Grossberg neural networks. In
[7], by using semi-discrete method, a new discrete analogue of one-dimensional
continuous Cohen-Grossberg neural networks with varying delays is obtained
by analysis and approximation techniques.

In this paper, we consider discrete analogue of the following two-dimensional
continuous Cohen-Grossberg BAM neural networks:
(1.1)

dxi(t)
dt = −ai(t, xi(t))

[
bi(t, xi(t))−

m∑
j=1

pij(t)fj(yj(t− τij(t)))− Ii(t)
]
,

dyj(t)
dt = −cj(t, yj(t))

[
dj(t, yj(t))−

k∑
i=1

qji(t)gi(xi(t− σji(t)))− Jj(t)
]
,

where i = 1, 2, . . . , k, j = 1, 2, . . . ,m, k,m ≥ 2 are the number of neurons in the
networks; xi(t) and yj(t) are the states of the ith neuron from the neural field
FX and the jth neuron from the neural field FY at the time t, respectively; fi, gi
denote the activation functions of jth neuron from FY and the ith neuron from
FX , respectively; pij(t) weights the strength of the ith neuron on the jth neuron
at the time t; qji(t) weights the strength of the jth neuron on the ith neuron
at the time t; Ii(t), Jj(t) denote the external inputs on the ith neuron from
FX and the jth neuron from FY , respectively; ai(t, xi(t)) and dj(t, yj(t)) are
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appropriately behaved functions such that the solution of model (1.1) remain
bounded.

Assume that
(H1) ai(t, x), bi(t, x), cj(t, y), dj(t, y) : R × R → R are continuous ω-periodic
functions with ω > 0 with respect to the first variable for ∀t, x, y ∈ R, i =
1, . . . , k, j = 1, . . . ,m, τij(t) > 0, σji(t) > 0, pij(t), qji(t), Ii(t), Jj(t) : R× R →
R are continuous ω-periodic functions for t ∈ R, i = 1, . . . , k, j = 1, . . . ,m;
(H2) there exist positive continuous ω-periodic functions γi, γ

∗
j ,Γi,Γ

∗
j such that

for ∀t, x, y ∈ R, i = 1, . . . , k, j = 1, . . . ,m,

0 < γi(t) ≤
ai(t, x)bi(t, x)− ai(t, y)bi(t, y)

x− y
< Γi(t),

0 < γ∗j (t) ≤
cj(t, x)dj(t, x)− cj(t, y)dj(t, y)

x− y
< Γ∗

j (t);

(H3) there exist positive constants ai, cj such that for ∀t, x, y ∈ R, i = 1, . . . , k,
j = 1, . . . ,m,

0 ≤ ai(t, x) ≤ ai, 0 ≤ cj(t, y) < cj .

Using the same semi-discrete method as that in [7], we can obtain the dis-
crete analogue of continuous two-dimensional Cohen-Grossberg BAM neural
networks (1.1) as follows:
(1.2)

xi(n+ 1)

= xi(n)e
−Γi(n)+γi(n)

2 h + ξi(h)
{

Γi(n)+γi(n)
2 xi(n)

− ai(n, xi(n))
[
bi(n, xi(n))−

m∑
j=1

pij(n)fj(yj(n− τij(n))) + Ii(n)
]}
,

yj(n+ 1)

= yj(n)e
−

Γ∗
j (n)+γ∗

j (n)

2 h + ηj(h)
{

Γ∗
j (n)+γ∗

j (n)

2 yj(n)

− cj(n, yj(n))
[
dj(n, yj(n))−

k∑
i=1

qji(n)gi(xi(n− σji(n))) + Jj(n)
]}
,

where ξi(h) = 1−e−
Γi(n)+γi(n)

2
h

Γi(n)+γi(n)

2

= h + O(h2), i = 1, . . . , k, k ∈ Z+
0 ; ηj(h) =

1−e−
Γ∗
j (n)+γ∗

j (n)

2
h

Γ∗
j
(n)+γ∗

j
(n)

2

= h+O(h2), j = 1, . . . ,m, m ∈ Z+
0 , Z

+
0 will be defined below.

Since the existence and global exponential stability of periodic solution of
system (1.2) have been not investigated, so in this paper, our propose is to
obtain sufficient condition to guarantee the existence and global exponential
stability of periodic solution for system (1.2). The paper is organized as follows.
In Section 2, the existence of periodic solution for discrete Cohen-Grossberg
BAM system (1.2) is studied by using continuation theorem of coincidence
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degree theory. In Section 3, the global exponential stability of periodic solution
is established by constructing a Lyapunov functional. In Section 4, an example
is given to show the effectiveness of the results in this paper.

Compared with the results obtained in [7], [43], [44], in our result on the
existence of periodic solution, the boundedness conditions on the activation
functions in [7], [43] and [44] are replaced with global Lipschitz conditions.
Compared with the result obtained in [4], in our result on the existence and
global exponential stability of periodic solution, the assumptions that the value
of activation functions at zero is zero are removed. Therefore, we obtain new
sufficient conditions on the existence and global exponential stability of periodic
solution for discrete-time neural networks.

Let Z be the set of all integers, i.e., Z = {. . . ,−2,−1, 0, 1, 2, . . .}; Z+
0 =

{0, 1, 2, . . .}; [a, b]Z = {a, a + 1, . . . , b − 1, b} where a, b ∈ Z, a ≤ b. Espe-

cially, [a,∞)Z
def
= {a, a + 1, a + 2, . . .}, (−∞, 0]Z

def
= {. . . ,−2,−1, 0}, where

a ∈ Z. It is not difficult to verify that ξi(h) > 0, ηj(h) > 0. In studying the
discrete-time analogue (2), we assume that h ∈ (0,+∞), ai(n, x), cj(n, y) :
Z × R → [0,+∞], τij(n), σji(n) : Z → Z+

0 , bi(n, x), dj(n, y) : Z × R → R,
pij(n), qji(n), Ii(n), Jj(n) : Z → R for i = 1, 2, . . . , k, j = 1, . . . ,m.

System (1.2) is supplemented with initial values of the form given by xi(l) =
ϕi(l), yj(l) = ψj(l) for i = 1, 2, . . . , k, j = 1, . . . ,m, l ∈ (−∞, 0]Z, where
(−∞, 0]Z = {. . . ,−2,−1, 0}, ϕi(l) and ψj(l) defined for l ∈ (−∞, 0]Z denote se-
quences of real numbers and supl∈(−∞,0]Z |ϕi(l)| <∞, supl∈(−∞,0]Z |ψj(l)| <∞,
i = 1, . . . , k, j = 1, . . . ,m.

2. Existence of at least a periodic solution

In this paper, based on the Mawhin continuation theorem, we will study
the existence of periodic solution of the system (1.2). For convenience, we first
introduce the Mawhin continuity theorem proposed by Gaines and Mawhin
[12].

Let X, Y be Banach spaces, L: Dom L ⊂ X → Y be a linear mapping
and N : X → Y be a continuous mapping. The mapping L will be called
a Fredholm mapping of index zero if dim KerL=codim Im L < ∞ and ImL
is closed in Y . If L is a Fredholm mapping of index zero, then there exist
continuous projectors P : X → X and Q : Y → Y such that ImP = KerL and
Im L=Ker Q=Im (I − Q). It follows that L/DomL∩KerP : (I − P )X → ImL
is invertible. We denote the inverse of the map L/DomL∩KerP by Kp. If Ω is
an open bounded subset of X, the mapping N will be called L-compact on Ω̄
if (QN)(Ω̄) is bounded and Kp(I − Q)N : Ω̄ → X is compact. Since Im Q is
isomorphic to Ker L, there exists an isomorphism J : Im Q→ KerL.

In the proof of our existence theorem, we will use the continuation theorem
of Gaines and Mawhin ([12]).

Lemma 2.1 (Continuation Theorem). Let L be a Fredholm mapping of index
zero and let N be L-compact on Ω̄. Suppose
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(i) Lx ̸= λN(x), ∀λ ∈ (0, 1), x ∈ ∂Ω;
(ii) QNx ̸= 0, ∀x ∈ KerL ∩ ∂Ω;
(iii) deg(JQNx,Ω ∩KerL, 0) ̸= 0.

Then Lx = Nx has at least one solution in Dom L ∩ Ω̄.

Let | · | denotes the norm in R, for the sake of convenience, we introduce
some notations.

Iω = {0, 1, . . . , ω − 1}, b∗i = max
n∈Iω

|bi(n, 0)|, d∗j = max
n∈Iω

|dj(n, 0)|,

f = min
n∈Iω

{|f(n)|}, f = max
n∈Iω

|f(n)|},

where f(n) is a real number sequence. Throughout this paper, for system (1.2),
in addition to (H2) and (H3), we further suppose that
(H4) There exist nonnegative constants αj , βi(i = 1, . . . , k, j = 1, 2, . . . ,m)
such that for ∀x, y ∈ R

|fj(x)− fj(y)| ≤ αj |x− y|,
|gi(x)− gi(y)| ≤ βi|x− y|;

(H5) There exist positive constants Mj , Ni(i = 1, . . . , k, j = 1, . . . ,m) such
that

|fj(x)| ≤Mj , |gi(x)| ≤ Ni;

(H6) ai(n, xi), cj(n, yj), bi(n, xi), dj(n, yj) are continuous ω-periodic functions
with respect to the first variable, pij , qji, Ii, Ji are all ω-periodic functions,
where i = 1, . . . , k, j = 1, 2, . . . ,m, ω is a positive integer.
(H7) There exist positive continuous ω-periodic functions L

a
i (t), L

c
j(t) such that

for ∀x, y, t ∈ R, i = 1, . . . , k, j = 1, . . . ,m,

|ai(t, x)− ai(t, y)| ≤ La
i (t)|x− y|,

|cj(t, x)− cj(t, y)| ≤ Lc
j(t)|x− y|.

Denote z(n) = (z1(n), . . . , zm+k(n))
T = (x1(n), . . . , xk(n), y1(n), . . . , ym(n))T .

Let gm = {z = {z(n)} : z(n) ∈ Rm+k, n ∈ Z}, and gω ⊂ gm be the sub-
space of all ω periodic sequence equipped with the norm ∥ · ∥, i.e., ∥z∥ =∑k

i=1(maxn∈Iω |xi(n)|) +
∑m

j=1(maxn∈Iω |yj(n)|) for any z(n) ∈ gω. It is easy

to show that gω is a finite dimensional Banach space. Let gω0 = {z = {z(n)} ∈
gω :

∑ω−1
n=0 z(n) = 0}, gωc = {z = {z(n)} ∈ gω : z(n) = c ∈ Rm+k, n ∈ Z}, then

it is easy to check that gω0 and gωc are both chosen linear subspace of gω and
gω = gω ⊕ gωc , dim gωc = m+ k.

Our main result on the existence of at least a periodic solutions for the
system (1.2) is stated in the following theorem.

Theorem 2.1. Assume that (H2)-(H4) and (H6) hold. Further assume that
(h1) For i = 1, 2, k, j = 1, . . . ,m,

γi > ai

m∑
j=1

pijαj



732 ZHENGQIU ZHANG AND LIPING WANG

and

γ∗j > cj

k∑
i=1

qjiβi.

Then the system (1.2) has at least one ω-periodic solution.

Proof. In order to apply Lemma 2.1 to the system (1.2). Let X = Y = gω and
define

Nz(n) =



F1(n)
· · · · · · · · · · · ·

Fk(n)
· · · · · · · · · · · ·
G1(n)

· · · · · · · · · · · ·
Gm(n)


for z ∈ X, n ∈ Z, where

F1(n) = (e−
Γ1(n)+γ1(n)

2 h − 1)x1(n) + ξ1(h)
{

Γ1(n)+γ1(n)
2 x1(n)− a1(n, x1(n))

×
[
b1(n, x1(n))−

m∑
j=1

p1j(n)fj(yj(n− τ1j(n))) + I1(n)
]}
,

· · · · · · · · · · · ·

Fk(n) = (e−
Γk(n)+γk(n)

2 h − 1)xk(n) + ξk(h)
{

Γk(n)+γk(n)
2 xk(n)− ak(n, xk(n))

×
[
bk(n, xk(n))−

m∑
j=1

pkj(n)fj(yj(n− τkj(n))) + Ik(n)
]}
,

· · · · · · · · · · · ·

G1(n) = (e−
Γ∗
1(n)+γ∗

1 (n)

2 h − 1)y1(n) + η1(h)
{

Γ∗
1(n)+γ∗

1 (n)
2 y1(n)

− c1(n, y1(n))
[
d1(n, y1(n))−

m∑
i=1

qi1(n)gi(xi(n− σ1i(n))) + J1(n)
]}
,

· · · · · · · · · · · ·

Gm(n) = (e−
Γ∗
m(n)+γ∗

m(n)

2 h−1)ym(n)+ηm(h)
{

Γ∗
m(n)+γ∗

m(n)
2 ym(n)−cm(n, ym(n))

×
[
dm(n, ym(n))−

m∑
i=1

qim(n)gi(xi(n− σmi(n))) + Jm(n)
]}
.

Let Lz(n) = z(n+1)− z(n), Pz = Qz = 1
ω

∑ω−1
s=0 z(s), z ∈ X (or Y ), n, s ∈ Z.

It is easy to see that L is a bounded linear operator. KerL = gωc , ImL = gω0
is closed in Y , and dimKerL = m + k = codimImL. Clearly, P and Q are
continuous projectors such that ImP = KerL, lmL = KerQ = Im(I − Q).
Thus, there exists Kp : ImL→ KerP ∩DomL, which is the converse projectors

of L, and Kp(n) =
∑n−1

r=0 z(r)−
1
ω̄

∑ω
r=1

∑r−1
s=0 z(s), n ∈ [0, ω − 1].
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Employing Lebesgue’s convergence theorem, we can easily prove that QN
and Kp(I − Q)N are continuous. By Ascoli-Arzela’s theorem, we can obtain
that QN(Ω̄) and Kp(I−Q)N are relatively compact for any open bounded set
Ω ∈ X. Hence, N is L-compact on Ω̄.

Corresponding to operator equation Lz = λNz, λ ∈ (0, 1), we have for
i = 1, 2, . . . , k, j = 1 . . . ,m,

(2.1)

{
xi(n+ 1)− xi(n) = λFi(n),
yi(n+ 1)− yi(n) = λGj(n).

Suppose that z(n) = (x1(n), . . . , xk(n), y1(n), . . . , ym(n))T ∈ X is a solution of
system (2.1) for a certain λ ∈ (0, 1). Condition (H4) implies that for ∀x, y ∈ R,
i = 1, 2, . . . , k, j = 1, 2, . . . ,m,

|fj(x)| ≤ |fj(0)|+ αj |x|(2.2)

and

|gi(y)| ≤ |gi(0)|+ βi|y|.(2.3)

In view of system (2.1), inequalities (2.2) and (2.3) we have

max
n∈Iω

|xi(n)|(2.4)

= max
n∈Iω

|xi(n+ 1)|

≤ max
n∈Iω

{(
1 + λ(e−

Γi(n)+γi(n)

2 h − 1)
)
|xi(n)|+ λξi(h)

[∣∣∣Γi(n) + γi(n)

2
xi(n)

− ai(n, xi(n))
(
bi(n, xi(n))−

m∑
j=1

pij(n)fj(yj(n− τij(n))) + Ii(n)
)∣∣∣]}

≤
(
1 + λ(e−

Γi(n)+γi(n)

2 h − 1)
2γi

Γi(n) + γi(n)

)
×max

n∈Iω
|xi(n)|

+ λξi(h)
{
ai

[
b∗i +

m∑
j=1

pij [|fj(0)|+ αj max
n∈Iω

|yj(n)|] + Ii

]}
and

max
n∈Iω

|yj(n)|(2.5)

= max
n∈Iω

|yj(n+ 1)|

≤ max
n∈Iω

{(
1 + λ(e−

Γ∗
j (n)+γ∗

j (n)

2 h − 1)
)
|yj(n)|

+ ληj(h)
[∣∣∣Γj(n) + γj(n)

2
yj(n)− cj(n, yj(n))

(
dj(n, yj(n))−

k∑
i=1

qji(n)

× gi(xi(n− σji(n))) + Jj(n)
)∣∣∣]}



734 ZHENGQIU ZHANG AND LIPING WANG

≤
(
1 + λ(e−

Γ∗
j (n)+γ∗

j (n)

2 h − 1)
2γ∗j (n)

Γ∗
j (n) + γ∗j (n)

)
max
n∈Iω

|yj(n)|

+ ληj(h)
{
cj

[
d∗j +

k∑
i=1

qji[|gi(0)|+ βi max
n∈Iω

|xi(n)|] + Jj

]}
.

Setting

max
1≤j≤m

{max
n∈Iω

|yj(n)|)} = max
n∈Iω

|yj0(n)|), max
1≤i≤k

{max
n∈Iω

|xi(n)|)} = max
n∈Iω

|xi0(n)|),

where j0 ∈ {1, 2, . . . ,m}, i0 ∈ {1, 2, . . . , k}. Then from (2.4) and (2.5), we have

max
n∈Iω

|xi0(n)|

≤
(
1 + λ(e−

Γi(n)+γi(n)

2 h − 1)
2γi

Γi(n) + γi(n)

)
max
n∈Iω

|xi0(n)|

+ λξi(h)
{
ai

[
b∗i +

m∑
j=1

pij [|fj(0)|+ αj max
n∈Iω

|yj0(n)|] + Ii

]}
and

max
n∈Iω

|yj0(n)|

≤
(
1 + λ(e−

Γ∗
j (n)+γ∗

j (n)

2 h − 1)
2γ∗j (n)

Γ∗
j (n) + γ∗j (n)

)
max
n∈Iω

|yj0(n)|

+ ληj(h)
{
cj

[
d∗j +

k∑
i=1

qji[|gi(0)|+ βi max
n∈Iω

|xi0(n)|] + Jj

]}
.

That is

(1− e−
Γi(n)+γi(n)

2 h)
2γi

Γi(n) + γi(n)
max
n∈Iω

|xi0(n)|(2.6)

≤ 1− e−
Γi(n)+γi(n)

2 h

Γi(n)+γi(n)
2

{
ai

[
b∗i +

m∑
j=1

pij [|fj(0)|+ αj max
n∈Iω

|yj0(n)|] + Ii

]}
and

(1− e−
Γ∗
i (n)+γ∗

i (n)

2 h)
2γ∗i

Γ∗
i (n) + γ∗i (n)

max
n∈Iω

|yj0(n)|(2.7)

≤ 1− e−
Γ∗
j (n)+γ∗

j (n)

2 h

Γ∗
j (n)+γ∗

j (n)

2

{
cj

[
d∗j +

k∑
i=1

qji[|gi(0)|+ βi max
n∈Iω

|xi0(n)|] + Jj

]}
.

From (2.6) and (2.7), we obtain

(2.8) γi max
n∈Iω

|xi0(n)| ≤ ai[b
∗
i + Ii +

m∑
j=1

pij |fj(0)|] + ai

m∑
j=1

pijαj max
I∈Iω

|yj0(n)|
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and

(2.9) γ∗j max
n∈Iω

|yj0(n)| ≤ cj [d
∗
j + Jj +

k∑
i=1

qji|gi(0)|] + cj

k∑
i=1

qjiβi max
I∈Iω

|xi0(n)|.

We consider two possible cases:
(i) maxn∈Iω |yj0(n)| ≤ maxn∈Iω |xi0(n)|;
(ii) maxn∈Iω |yj0(n)| > maxn∈Iω |xi0(n)|.

(i) When maxn∈Iω |yj0(n)| ≤ maxn∈Iω |xi0(n)|, from (2.8), we have

(2.10) (γi − ai

m∑
j=1

pijαj) max
n∈Iω

|xi0(n)| ≤ ai(b
∗
i + Ii +

m∑
j=1

pij |fj(0)|).

Then

max
n∈Iω

|yj0(n)| ≤ max
n∈Iω

|xi0(n)|(2.11)

≤ max
1≤i≤k

{
ai(b

∗
i + Ii +

m∑
j=1

pij |fj(0)|)

γi − ai
m∑
j=1

pijαj

} def
= d1.

(ii) When maxn∈Iω |yj0(n)| > maxn∈Iω |xi0(n)|, from (2.9), we have

(γ∗i − cj

k∑
i=1

qjiβi) max
n∈Iω

|yj0(n)| ≤ cj(d
∗
j + Jj +

k∑
i=1

qji|gi(0)|).

Then

max
n∈Iω

|xi0(n)| < max
n∈Iω

|yj0(n)|(2.12)

≤ max
1≤j≤m

{
cj(d

∗
j + Jj +

k∑
i=1

qji|gi(0)|)

γ∗j − cj
k∑

i=1

qjiβi

} def
= d2.

From (2.11) and (2.12), we have for n ∈ Iω, i = 1, 2, . . . , k, j = 1, . . . ,m,

|xi(n)| < max{d1, d2}
def
= d(2.13)

and

|yj(n)| < max{d1, d2}
def
= d.(2.14)

Obviously, d1, d2, d are independent of λ. Taking Ω = {z ∈ X : ∥z∥ < k(d +
r1) +m(d+ r2)}, where r1, r2 are two chosen positive constants such that the
bound of Ω is larger. This Ω satisfies condition (i) in Lemma 2.1. Now, we
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prove that when z ∈ ∂Ω∩KerL = ∂Ω∩Rm+k, QNz ̸= 0. If this is not true, then
constant vector z with z ∈ ∂Ω∩Rm+k such that for i = 1, 2, . . . , k, j = 1, . . . ,m

1

ω

ω−1∑
s=0

{
(e−

Γi(s)+γi(s)

2 h − 1)xi + ξi(h)
{Γi(s) + γi(s)

2
xi(2.15)

− ai(s, xi)
[
bi(s, xi)−

m∑
j=1

pij(s)fj(yj) + Ii(s)
]}

= 0,

1

ω

ω−1∑
s=0

{
(e−

Γ∗
j (s)+γ∗

j (s)

2 h − 1)yj + ηj(h)
{Γ∗

j (s) + γ∗j (s)

2
yj(2.16)

− cj(s, yj)
[
dj(s, yj)−

k∑
i=1

qji(s)gi(xi) + Jj(s)
]}

= 0.

From (2.15) and (2.16). following the argument of (2.13) and (2.14) gives that
for i = 1, 2, . . . , k, j = 1, . . . ,m

|xi| < d, |yj | < d.

That is

∥z∥ < k(d+ r1) +m(d+ r2).

This contradicts z ∈ ∂Ω. This proof of (ii) in Lemma 2.1 is complete. Fi-
nally, we prove that (iii) in Lemma 2.1 holds. We only need to prove that
deg

{
−JQNz,Ω ∩KerL, (0, 0, . . . , 0)T

}
̸= (0, 0, . . . , 0)T . Now we show that

deg
{
−JQNz,Ω ∩KerL, (0, 0, . . . , 0)T

}
= deg

{
(p1x1, . . . , qmym)

T
,Ω ∩KerL, (0, 0, . . . , 0)T

}
,

where

pi =
1

ω

ω−1∑
s=0

(1− e−
Γi(s)+γi(s)

2 h), qj =
1

ω

ω−1∑
s=0

(1− e−
Γ∗
j (s)+γ∗

j (s)

2 h),

i = 1, . . . , k, j = 1, . . . ,m.

To this end, we define a mapping ϕ : DomL× [0, 1] → X by

ϕ(x1, x2, . . . , xk; y1, . . . , ym, µ)
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=



−µ
ω

ω−1∑
s=0

F1(s) + (1− µ)p1x1

· · · · · · · · · · · · · · ·

−µ
ω

ω−1∑
s=0

Fi(s) + (1− µ)pixi

· · · · · · · · ·

−µ
ω

ω−1∑
s=0

G1(s) + (1− µ)q1y1

· · · · · · · · ·

−µ
ω

ω−1∑
s=0

Gj(s) + (1− µ)qi(s)yi

· · · · · · · · ·



,

where µ ∈ [0, 1] is a parameter. We show that when z ∈ ∂Ω ∩ KerL = ∂Ω ∩
Rm+k, ϕ(x1, . . . , xk, y1, . . . , ym, µ) ̸= (0, . . . , 0)T . If it is not true, then when
z ∈ ∂Ω ∩ KerL = ∂Ω ∩ Rm+k, ϕ(x1, x2, . . . , xk; y1, . . . , ym, µ) = (0, 0, . . . , 0)T .
Thus constant vector z with z ∈ ∂Ω satisfies for i = 1, 2, . . . , k, j = 1, . . . ,m,

µ

ω

ω−1∑
s=0

{
(1− e−

Γi(s)+γi(s)

2 h)xi − ξi(h)
{Γi(s) + γi(s)

2
xi(2.17)

− ai(s, xi)
[
bi(s, xi)−

m∑
j=1

pij(s)fj(yj) + Ii(s)
]}

+ (1− µ)pixi = 0,

µ

ω

ω−1∑
s=0

{
(1− e−

Γ∗
j (s)+γ∗

j (s)

2 h)yj − ηj(h)
{Γ∗

j (s) + γ∗j (s)

2
yj(2.18)

− cj(s, yj)
[
dj(s, yj)−

k∑
i=1

qji(s)gi(xi) + Jj(s)
]}

+ (1− µ)qjyj = 0.

Denote |xi0 | = max1≤i≤k |xi|, |yj0 | = max1≤j≤m |yj |, i0 ∈ {1, . . . , k}, j0 =
{1, . . . ,m}. We make the following Claims.

Claim 1. |xi0 | < d + r1. Otherwise, |xi0 | ≥ d + r1. We consider two possible
cases:

(a) |yj0 | ≤ |xi0 |;
(b) |yj0 | > |xi0 |.

(a) When |yi0 | ≤ |xi0 |, we have

µ

ω

ω−1∑
s=0

{
(1− e−

Γi(s)+γi(s)

2 h)xi0 − ξi(h)
{Γi(s) + γi(s)

2
xi0

− ai(s, xi0)
[
bi(s, xi0)−

m∑
j=1

pijfj(yj) + Ii(n)
]}
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+
1− µ

ω

ω−1∑
s=0

(1− e−
Γi(s)+γi(s)

2 h)xi0

≥ 1

ω

ω−1∑
s=0

{
(1− e−

Γi(s)+γi(s)

2 )|xi0 | − ξi(h)
[Γi(s)− γi(s)

2
|xi0 |

− ai(bi +

m∑
j=1

pij(αj |yj0 |+ |fj(0)|) + Ii)
]}

≥ 1

ω

ω−1∑
s=0

{
γi(s)ξi(h)|xi0 | − ξi(h)ai

[
bi +

m∑
j=1

pij(αj |xi0 |+ |fj(0)|) + Ii

]}

≥ 1

ω

ω−1∑
s=0

{
γiξi(h)|xi0 | − ξi(h)ai

[
bi +

m∑
j=1

pij(αj |xi0 |+ |fj(0)|) + Ii

]}

≥ 1

ω

ω−1∑
s=0

ξi(h)r1(γi − ai

m∑
j=1

pijαj)

> 0.

This contradicts (2.17).

(b) When |yi0 | > |xi0 |, we have

µ

ω

ω−1∑
s=0

{
(1− e−

Γ∗
j (s)+γ∗

j (s)

2 h)yj0 − ηj(h)
{Γ∗

j (s) + γ∗j (s)

2
yj0

− cj(s, yj0)
[
dj(s, yj0)−

k∑
i=1

qjigi(xi) + Jj(s)
]}

+
1− µ

ω

ω−1∑
s=0

(1− e−
Γ∗
j (s)+γ∗

j (s)

2 h)yj0

≥ 1

ω

ω−1∑
s=0

{
(1− e−

Γ∗
j (s)+γ∗

j (s)

2 )|yj0 |

− ηj(h)
[Γ∗

j (s)− γ∗j (s)

2
|yj0 | − cj(dj +

k∑
i=1

qji(βi|xi0 |+ |gi(0)|) + Jj)
]}

≥ 1

ω

ω−1∑
s=0

{
γ∗j (s)ηj(h)|yj0 | − ηj(h)cj

[
dj +

k∑
i=1

qji(βi|xi0 |+ |gi(0)|) + Jj

]}
≥ 1

ω

ω−1∑
s=0

{
γ∗j ηj(h)|yj0 | − ηj(h)cj

[
dj +

k∑
i=1

qji(βi|yj0 |+ |gi(0)|) + Jj

]}
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≥ 1

ω

ω−1∑
s=0

ηj(h)r2(γ
∗
j − cj

k∑
i=1

qjiβi)

> 0.

This contradicts (2.18).

Claim 2. |yj0 | < d + r2. Otherwise, |yj0 | ≥ d + r2. We consider two possible
cases: (a) |xi0 | ≤ |yj0 |; (b) |xi0 | > |yj0 |. This arguments of (a) and (b) are
similar to this arguments of (b) and (a) in Claim 1, then the proof is omitted.
Hence Claim 2 holds. In view of Claim 1 and Claim 2, we have |xi0 | < d+ r1
and |yj0 | < d+ r2. Thus

∥z∥ =
k∑

i=1

|xi|+
m∑
j=1

|yj | < m(d+ r2) + k(d+ r1).

Hence z ∈ Ω ∩ Rm+k. This contradicts the fact z ∈ ∂Ω ∩ Rm+k. According to
topological degree theory and by taking J = I since KerL = ImQ, we obtain,

deg
{
−JQNz,Ω ∩KerL, (0, 0)T

}
= deg

{
ϕ(x1, . . . , xk, y1, . . . , ym, 1),Ω ∩KerL, (0, 0, . . . , 0)T

}
= deg

{
ϕ(x1, . . . , xk, y1, . . . , ym, 0),Ω ∩KerL, (0, . . . , 0)T

}
= deg

{
(p1x1, . . . , pkxk, q1y1, . . . , qmym)

T
,Ω ∩KerL, (0, 0, . . . , 0)T

}
̸= 0.

So far, we have proved that Ω satisfies all the assumptions in Lemma 2.1.
Therefore, the system (1.2) has at least one ω-periodic solution. □

3. Global exponential stability of periodic solution

It follows from Theorem 2.1 that the system (1.2) has at least a ω-periodic
solution z∗(n) = (x∗1(n), . . . , x

∗
k(n), y

∗
1(n, . . . , y

∗
m(n))T . Obviously, if this peri-

odic solution is globally exponentially stable, then it is unique. We next show
that the periodic solution z∗(n) is globally exponentially stable.

Assume that z(n) = (x1(n), . . . , xk(n), y1(n), . . . , ym(n))T is an arbitrary
solution of the system (1.2). Make a transformation for the system (1.2):
ui(n) = xi(n)− x∗i (n), vj(n) = yj(n)− y∗j (n), then the system (1.2) becomes

ui(n+ 1)(3.1)

= e−
Γi(n)+γi(n)

2 hui(n) + ξi(h)
{Γi(n) + γi(n)

2
ui(n)

− ai(n, xi(n))bi(n, xi(n)) + ai(n, x
∗
i (n))bi(n, x

∗
i (n))

−
m∑
j=1

pij(n)[ai(n, xi(n))fj(yj(n− τij(n)))
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− ai(n, x
∗
i (n))fj(y

∗
j (n− τij(n)))]− [ai(n, xi(n))− ai(n, x

∗
i (n))]Ii(n)

}
,

vj(n+ 1)

= e−
Γ∗
j (n)+γ∗

j (n)

2 hvj(n) + ηj(h)
{Γ∗

j (n) + γ∗j (n)

2
vj(n)

− cj(n, yj(n))dj(n, yj(n)) + cj(n, y
∗
j (n))dj(n, y

∗
j (n))

−
k∑

i=1

qji(n)[cj(n, yj(n))gi(xi(n− σji(n)))

− cj(n, y
∗
j (n))gi(x

∗
i (n− σji(n)))]− [cj(n, yj(n))− cj(n, y

∗
j (n))]Jj(n)

}
.

Clearly, the periodic solution z∗(n) of the system (1.2) is exponentially stable
if and only if the equilibrium point o of the system (3.1) is exponentially stable.

Theorem 3.1. Assume that (H2)-(H7) hold. Further assume that

(h2) γi >

m∑
j=1

pij

(
aiαj + La

iMj

)
+ La

i Ii;

γ∗j >
k∑

i=1

qji

(
cjβi + Lc

jNi

)
+ Lc

jJj .

Then the system (1.2) has a unique periodic solution which is globally exponen-
tially stable.

Proof. Since (h2) implies that (h1) in Theorem 2.1 holds, we only need to show
that the equilibrium point O of the system (3.1) is globally exponentially stable.

From the system (3.1), we obtain

|ui(n+ 1)|

(3.2)

≤ e−
Γi(n)+γi(n)

2 h|ui(n)|+ ξi(h)
{Γi(n)− γi(n)

2
|ui(n)|

+

m∑
j=1

|pij(n)|
∣∣∣ai(n, xi(n))fj(yj(n− τij(n)))

− ai(n, x
∗
i (n))fj(y

∗
j (n− τij(n)))

∣∣∣+ |ai(n, xi(n))− ai(n, x
∗
i (n))||Ii(n)|

}
≤ e−

Γi(n)+γi(n)

2 h|ui(n)|+ ξi(h)
{Γi(n)− γi(n)

2
|ui(n)|

+
m∑
j=1

pij

[
|ai(n, xi(n))− ai(n, x

∗
i (n))|

× |fj(yj(n− τij(n))|+ |ai(n, x∗i (n)||fj(yj(n− τij(n)))
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− fj(y
∗
j (n− τij(n))|

]
+ La

i |ui(n)|Ii
}

≤ e−
Γi(n)+γi(n)

2 h|ui(n)|+ ξi(h)
{Γi(n)− γi(n)

2
|ui(n)|

+

m∑
j=1

pij

[
La
iMj |ui(n)|+ aiαj |vj(n− τij(n))|

]
+ La

i |ui(n)|Ii
}
,

|vj(n+ 1)| ≤ e−
Γ∗
j (n)+γ∗

j (n)

2 h|vj(n)|+ ηj(h)
{Γ∗

j (n)− γ∗j (n)

2
|vj(n)|

(3.3)

+

k∑
i=1

qji

[
Lc
jNi|vj(n)|+ cjβj |ui(n− σji(n))|

]
+ Lc

j |vj(n)|Jj
}
.

Consider the functions Fi(·) and Gj(·) defined by

Fi(x) = 1− x+ xξi(h)
{
γi −

m∑
j=1

pij

(
aiαjx

τij(n) + La
iMj

)
− La

i Ii

}
,

Gj(y) = 1− y + yηj(h)
{
γ∗j −

k∑
i=1

qji

(
cjβiy

σji(n) + Lc
jNi

)
− Lc

jJj

}
.

Since we have for i = 1, . . . , k, j = 1, . . . ,m,

Fi(1) = ξi(h)
{
γi −

k∑
i=1

pij

(
aiαi + La

iMj

)
− La

i Ii

}
> 0

and

Gi(1) = ηj(h)
{
γ∗j −

k∑
i=1

qji

(
cjβi + Lc

jNi

)
− Lc

jJj

}
> 0,

then there must be a real number 1 < η < +∞ such that for i = 1, . . . , k,
j = 1, . . . ,m,

Fi(η) > 0, Gj(η) > 0.

Therefore, we have for i = 1, . . . , k, j = 1, . . . ,m,

η − ηξi(h)
{
γi −

m∑
j=1

pij

(
aiη

τij(n)αj + La
iMj

)
− La

i Ii

}
< 1,(3.4)

η − ηηj(h)
{
γ∗j −

k∑
i=1

qji

(
cjη

σji(n)βi + Lc
jNi

)
− Lc

jJj

}
< 1.(3.5)

Now let we consider nonnegative sequence Ui(n), Vj(n) for i = 1, . . . , k, j =
1, . . . ,m, n ∈ Z, defined by

Ui(n) = ηn|ui(n)|, Vj(n) = ηn|vj(n)|.(3.6)
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Thus from (3.2), (3.3) and ((3.6), we have

Ui(n+ 1)(3.7)

≤ ηe−
Γi(n)+γi(n)

2 h|Ui(n)|+ ξi(h)η
{Γi(n)− γi(n)

2
|Ui(n)|

+

m∑
j=1

pij [La
iMj |Ui(n)|+ αjaiη

τij(n)|Vj(n− τij(n))|] + La
i Ii|Ui(n)|

}
,

Vj(n+ 1)(3.8)

≤ ηe−
Γ∗
j (n)+γ∗

j (n)

2 h|Vj(n)|+ ηj(h)η
{Γ∗

j (n)− γ∗j (n)

2
|Vj(n)|

+
k∑

i=1

qji[Lc
jNi|Vj(n)|+ βicjη

σji(n)|Ui(n− σji(n))|] + Lc
jJj |Vj(n)|

}
.

Denote

M = ηn max
1≤i≤k,1≤j≤m

{
sup

l∈(−∞,0]Z

|ui(l)|, sup
l∈(−∞,0]Z

|vj(l)|

}
,M > 0.

It follows that from (3.6) and the definition of the constant M that

Ui(l) ≤M, Vj(l) ≤M

for i = 1, . . . , k, j = 1, . . . ,m, l ∈ (−∞, 0]Z.
We claim that for i = 1, . . . , k, j = 1, . . . ,m, n ∈ Z+

0 ,

Ui(n) ≤M, Vj(n) ≤M.(3.9)

Suppose that claim (3.9) is not valid in sense, then there exist a k∗-th com-
ponent among Ui(·) and a first time n1 ∈ Z+, such that Uk∗(n) > M and
Ui(n) ≤M for n ∈ (−∞, n1−1]Z, while Ui(n) ≤M for i = 1, . . . , k, i ̸= k∗, n ∈
(−∞, n1]Z, Vj(n) ≤ M for j = 1, . . . ,m, n ∈ (−∞, n1]Z; or there exist a k∗-th
component among Vj(·) and a first time n1 ∈ Z+, such that Vk∗(n) > M and
Vj(n) ≤ M for n ∈ (−∞, n1 − 1]Z, while Vj(n) ≤ M for j = 1, . . . ,m, j ̸=
k∗, n ∈ (−∞, n1]Z, Ui(n) ≤ M for i = 1, . . . , k, n ∈ (−∞, n1]Z. If the first case
holds, then from (3.4) and (3.7), we obtain

M < Uk(n1)(3.10)

≤
{
ηe−

Γi(n1)+γi(n1)

2 h + ηξi(h)
[Γi(n1)− γi(n1)

2

+
m∑
j=1

pij(αjaiη
τij(n1) + La

iMj) + La
i Ii

]}
M

≤
{
η − ηξi(h)

[
γi −

m∑
j=1

pij(αjaiη
τij(n1) + La

iMj)− La
i Ii

]}
M

≤M,
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which is a contradiction. If the second case holds, a contradiction also can be
led from (3.5) and (3.8). Thus the claim (3.9) is valid. From (3.6) and (3.9)
we deduce that

|ui(n)| ≤ (
1

η
)nM, |vj(n)| ≤ (

1

η
)nM

for i = 1, . . . , k, j = 1, . . . ,m, n ∈ Z+
0 . Since the constant η satisfies 1 < η and

the initial values are arbitrary, we conclude from the above that the equilibrium
o is globally exponentially stable. That is, the periodic solution z∗(n) of the
system (1.2) is globally exponentially stable. The proof is complete. □

4. An example

Example 1. Consider the following second-order discrete-time Cohen-Gross-
berg bidirectional associative memory neural networks with delays:
(4.1)

x1(n+ 1)

= x1(n)e
− 42+7 sin 36πn+56+7 sin 36πn

2 h + ξ1(h)
{

42+7 sin 36πn+56+7 sin 36πn
2 x1(n)

− [7 + sin 36πn− cos 36πn
1+x2

1(n)
]

×
[
7x1(n)− ( 3

80 + 1
16 sin 36πn) sin y1(n− (2 + sin 36πn)) + sin 36πt

]}
,

y1(n+ 1)

= y1(n)e
− 38+42

2 h + η1(h)
{

38+42
2 y1(n)− [5− sin 36πn

4+y2
1(n)

]

×
[
8y1(n)− ( 1

50 + 2
25 cos 36πn) cosx1(n− (2 + sin 36πn)) + cos 36πn

]}
,

where

n > 3, ξ1(h) =
1− e−

42+7 sin 36πn+56+7 sin 36πn
2 h

42+7 sin 36πn+56+7 sin 36πn
2

, η1(h) =
1− e−

38+42
2 h

38+42
2

.

Since the value of the activation functions at zero is not zero, then the results in
[4] can not ensure the global exponential stability of the system (4.1). However,
by using Theorem 3.1, we can prove the periodic solution of the system (4.1)
is globally exponentially stable. Since for n > 3, x, y ∈ R,

|a1(n, x)− a1(n, y)| = |cos 36πt
1 + x2

− cos 36πt

1 + y2
|

≤ |x− y| |x+ y|
(1 + x2)(1 + y2)

≤ |x− y|( |x|
1 + x2

+
|y|

1 + y2
)

≤ |x− y|,

|c1(n, x)− c1(n, y)| ≤
|x− y|

2
,
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a1(n, x)b1(n, x)− a1(n, y)b1(n, y)

x− y

= 7(7 + sin 36πt)− 7 cos 200πt
1− xy

(1 + x2)(1 + y2)

≥ 7(7 + sin 36πt)− 7
1 + |xy|

(1 + x2)(1 + y2)

≥ 42 + 7 sin 36πt,

a1(t, x)b1(t, x)− a1(t, y)b1(t, y)

x− y

= 7(7 + sin 36πt)− 7 cos 200πt
1− xy

(1 + x2)(1 + y2)

≤ 7(7 + sin 36πt) + 7
1 + |xy|

(1 + x2)(1 + y2)

≤ 56 + 7 sin 36πt,

38 ≤ c1(t, x)d1(t, x)− c1(t, y)d1(t, y)

x− y
≤ 42,

therefore, in Theorem 3.1.

m = n = 1, La
1 = 1, Lc

1 =
1

2
, γ1 = 35, γ∗1 = 38, M1 = 1, N1 = 1,

α1 = 1, β1 = 1, a1 = 8, c1 = 6, ω =
1

18
, I1 = J1 = 1, p11 = 0.1, q11 = 0.1.

It is easy to show that the rest conditions in Theorem 3.1 are also satisfied.
Hence by Theorem 3.1, the periodic solution of the system (4.1) is globally and
exponentially stable.

5. Conclusions

By employing coincidence degree theory and using Halanay-type inequality
technique, a sufficient condition is given to guarantee the existence and global
exponential stability of periodic solutions for the two-dimensional discrete-time
Cohen-Grossberg BAM neural networks. Compared with the results in exist-
ing papers, in our result on the existence of periodic solution, the boundedness
conditions on the activation functions are replaced with global Lipschitz condi-
tions. In our result on the existence and global exponential stability of periodic
solution, the assumptions in existing papers that the value of activation func-
tions at zero is zero are removed.

Acknowledgements. The authors would like to thank the reviewers and the
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