• Title/Summary/Keyword: Lyapunov Methods

Search Result 118, Processing Time 0.03 seconds

Stable Intelligent Control of Chaotic Systems via Wavelet Neural Network

  • Choi, Jong-Tae;Choi, Yoon-Ho;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.316-321
    • /
    • 2003
  • This paper presents a design method of the wavelet neural network based controller using direct adaptive control method to deal with a stable intelligent control of chaotic systems. The various uncertainties, such as mechanical parametric variation, external disturbance, and unstructured uncertainty influence the control performance. However, the conventional control methods such as optimal control, adaptive control and robust control may not be feasible when an explicit, faithful mathematical model cannot be constructed. Therefore, an intelligent control system that is an on-line trained WNN controller based on direct adaptive control method with adaptive learning rates is proposed to control chaotic nonlinear systems whose mathematical models are not available. The adaptive learning rates are derived in the sense of discrete-type Lyapunov stability theorem, so that the convergence of the tracking error can be guaranteed in the closed-loop system. In the whole design process, the strict constrained conditions and prior knowledge of the controlled plant are not necessary due to the powerful learning ability of the proposed intelligent control system. The gradient-descent method is used for training a wavelet neural network controller of chaotic systems. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with application to the chaotic systems.

  • PDF

Delay-dependent Fuzzy $H_2/H_{\infty}$ Controller Design for Delayed Fuzzy Dynamic Systems (시간지연 퍼지 시스템의 지연 종속 퍼지 $H_2/H_{\infty}$ 제어기 설계)

  • 김종래;정은태
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.5
    • /
    • pp.19-27
    • /
    • 2004
  • A delay dependent fuzzy $H_2/H_{\infty}$ controller design method for delayed fuzzy dynamic systems is considered. Using delay-dependent Lyapunov function, the asymptotical stability and $H_2/H_{\infty}$ performance problem are discussed. A sufficient condition for the existence of fuzzy controller is presented in terms of linear matrix inequalities(LMIs). A simulation example is given to illustrate the design procedures and performances of the proposed methods.

Takagi-Sugeno Fuzzy Sampled-data Filter for Nonlinear System (비선형 시스템을 위한 Takagi-Sugeno 퍼지 샘플치필터)

  • Kim, Ho Jun;Park, Jin Bae;Joo, Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.349-354
    • /
    • 2015
  • This paper presents the stability conditions of the Takagi-Sugeno (T-S) fuzzy sampled-data filter. The error system between the T-S fuzzy system and fuzzy filter is presented. In the sense of the Lyapunov stability analysis, the stability conditions are given, which can be represented in terms of linear matrix inequalities (LMIs). The proposed stability conditions utilize the different approach from the conventional methods, and have better performance than that of the conventional ones. The simulation example is given to show the effectiveness of the proposed method.

Design of Adaptive-Neuro Controller of SCARA Robot Using Digital Signal Processor (디지털 시그널 프로세서를 이용한 스카라 로봇의 적응-신경제어기 설계)

  • 한성현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.7-17
    • /
    • 1997
  • During the past decade, there were many well-established theories for the adaptive control of linear systems, but there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of industrial robot control. Neural network computing methods provide one approach to the development of adaptive and learning behavior in robotic system for manufacturing. Computational neural networks have been demonstrated which exhibit capabilities for supervised learning, matching, and generalization for problems on an experimental scale. Supervised learning could improve the efficiency of training and development of robotic systems. In this paper, a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator using digital signal processors is proposed. Digital signal processors, DSPs, are micro-processors that are developed particularly for fast numerical computations involving sums and products of variables. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. The proposed adaptive-neuro control scheme is illustrated to be an efficient control scheme for implementation of real-time control for SCARA robot with four-axes by experiment.

  • PDF

A Six-Phase CRIM Driving CVT using Blend Modified Recurrent Gegenbauer OPNN Control

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1438-1454
    • /
    • 2016
  • Because the nonlinear and time-varying characteristics of continuously variable transmission (CVT) systems driven by means of a six-phase copper rotor induction motor (CRIM) are unconscious, the control performance obtained for classical linear controllers is disappointing, when compared to more complex, nonlinear control methods. A blend modified recurrent Gegenbauer orthogonal polynomial neural network (OPNN) control system which has the online learning capability to come back to a nonlinear time-varying system, was complied to overcome difficulty in the design of a linear controller for six-phase CRIM driving CVT systems with lumped nonlinear load disturbances. The blend modified recurrent Gegenbauer OPNN control system can carry out examiner control, modified recurrent Gegenbauer OPNN control, and reimbursed control. Additionally, the adaptation law of the online parameters in the modified recurrent Gegenbauer OPNN is established on the Lyapunov stability theorem. The use of an amended artificial bee colony (ABC) optimization technique brought about two optimal learning rates for the parameters, which helped reform convergence. Finally, a comparison of the experimental results of the present study with those of previous studies demonstrates the high control performance of the proposed control scheme.

Delay-dependent Fuzzy H Controller Design for Delayed Fuzzy Dynamic Systems (시간지연 퍼지 시스템의 지연 종속 퍼지 H제어기 설계)

  • Lee, Kap-Rai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.571-576
    • /
    • 2004
  • This paper presents a delay dependent fuzzy $H_{\infty}$ controller design method for delayed fuzzy dynamic systems. Using delay-dependent Lyapunov function, the global exponential stability and $H_{\infty}$ performance problem arc discussed. A sufficient conditions for the existence of fuzzy controller is presented in terms of linear matrix inequalities(LMIs). A simulation example is given to illustrate the design procedures and performances of the proposed methods.

Time delay study for semi-active control of coupled adjacent structures using MR damper

  • Katebi, Javad;Zadeh, Samira Mohammady
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1127-1143
    • /
    • 2016
  • The pounding phenomenon in adjacent structures happens in severing earthquakes that can cause great damages. Connecting neighboring structures with active and semi-active control devices is an effective method to avoid mutual colliding between neighboring buildings. One of the most important issues in control systems is applying online control force. There will be a time delay if the prose of producing control force does not perform on time. This paper proposed a time-delay compensation method in coupled structures control, with semi-active Magnetorheological (MR) damper. This method based on Newmark's integration is adopted to mitigate the time-delay effect. In this study, Lyapunov's direct approach is employed to compute demanded voltage for MR dampers. Using Lyapunov's direct algorithm guarantees the system stability to design a controller based on feedback. Because of the strong nonlinearity of MR dampers, the equation of motion of coupled structures becomes an involved equation, and it is impossible to solve it with the common time step methods. In present paper modified Newmark-Beta integration based on the instantaneous optimal control algorithm, used to solve the involved equation. In this method, the response of a coupled system estimated base on optimal control force. Two MDOF structures with different degrees of freedom are finally considered as a numeric example. The numerical results show, the Newmark compensation is an efficient method to decrease the negative effect of time delay in coupled systems; furthermore, instantaneous optimal control algorithm can estimate the response of structures suitable.

Nonlinear Characterization of EEG Under the Internal and External Stimuli (내·외적인 자극을 받는 뇌파의 비선형 동력학적 특징)

  • Jung, Ki-Young;Kim, Jae-Moon;Yoo, Cheol-Seung;Yi, Sang-Hoon
    • Annals of Clinical Neurophysiology
    • /
    • v.4 no.1
    • /
    • pp.28-33
    • /
    • 2002
  • Backgrounds and objective : EEG reflect dynamic changes of continuous neuronal activities by internal and external stimuli. The aim of this study is to quantify nonlinearly the local dynamic differences among EEG data corresponding to different states of brain. Methods : EEG was recorded from twelve healthy normal subjects(mean age, 29.7 years; 8 men and 4 women) using digital EEG machine. 18-channel EEG data were selected during eyes closed(EC), eyes open(EO), and mental arithmetic(MA) in each subject. Correlation dimension(D2) and largest Lyapunov exponent(LLE) were calculated from three states and average value was mapped 2 dimensionally and compared with each other. Results : The distribution of D2 was relatively symmetric and its value was higher in frontal than in parieto-occipital region during EC. These findings were reversed during EO. Bilateral centro-temporo-parietal region showed high D2 value in MA compared with those in EC, which was more prominent in left side. LLE was larger than zero in all state and showed significant differences among EC, EO and MA(p=0.000). Conclusion : These results suggest that nonlinear analysis of EEG can quantify dynamic state of brain.

  • PDF

STABILIZATION OF VISCOELASTIC WAVE EQUATION WITH VARIABLE COEFFICIENTS AND A DELAY TERM IN THE INTERNAL FEEDBACK

  • Liang, Fei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1457-1470
    • /
    • 2017
  • In this paper, we consider the stabilization of the viscoelastic wave equation with variable coefficients in a bounded domain with smooth boundary, subject to linear dissipative internal feedback with a delay. Our stabilization result is mainly based on the use of the Riemannian geometry methods and Lyapunov functional techniques.

State-Space Model Based On-Line Parameter Estimation for Time-Delay Systems

  • Choi, Young-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.76.5-76
    • /
    • 2001
  • This paper considers the parameter estimation for the state-space model based time-delay systems in the case that the Lyapunov stability of the system is guaranteed. In order to estimate the parameters, two estimation methods can be proposed which are known as the parallel model and the series parallel model. It is shown that the parameters can be estimated using each method, and also certied that the results are correct by simulations.

  • PDF