• 제목/요약/키워드: Lyapunov Method

검색결과 696건 처리시간 0.028초

A Line-integral Fuzzy Lyapunov Functional Approach to Sampled-data Tracking Control of Takagi-Sugeno Fuzzy Systems

  • Kim, Han Sol;Joo, Young Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2521-2529
    • /
    • 2018
  • This paper deals with a sampled-data tracking control problem for the Takagi-Sugeno fuzzy system with external disturbances. We derive a stability condition guaranteeing both asymptotic stability and H-infinity tracking performance by employing a newly proposed time-dependent line-integral fuzzy Lyapunov-Krasovskii functional. A new integral inequality is also introduced, by which the proposed stability condition is formulated in terms of linear matrix inequalities. Finally, the effectiveness of the proposed method is demonstrated through a simulation example.

Alternative Capturability Analysis of PN Laws

  • Ryoo, Chang-Kyung;Kim, Yoon-Hwan;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권2호
    • /
    • pp.1-13
    • /
    • 2006
  • The Lyapunov stability theory has been known inadequate to prove capturability of guidance laws because the equations of motion resulted from the guidance laws do not have the equilibrium point. By introducing a proper transformation of the range state, the original equations of motion for a stationary target can be converted into nonlinear equations with a specified equilibrium subspace. Physically, the equilibrium subspace denotes the direction of missile velocity to the target. By using a single Lyapunov function candidate, capturability of several PN laws for a stationary target is then proved for examples. In this approach, there is no assumption of the constant speed missile. The proposed method is expected to provide a unified and simplified scheme to prove the capturability of various kinds of guidance laws.

2차의 리아프노프 함수에 의한 유연 조인트 로봇의 비선형 견실제어기 설계 (Nonlinear robust control design with quadratic Lyapunov function for robots with joint elasticity)

  • 김동환;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.573-576
    • /
    • 1996
  • We propose robust control scheme for flexible joint manipulator in the presence of nonlinearity and mismatched uncertainty. The control is designed based on Lyapunov approach. The robust control which is based on the computed torque scheme and state transformation via implanted control is introduced. The design procedure starts with the construction of linearized subsystems via the computed torque method and then uses state transformation. With this approach we do not impose an upper-bound constraint on the inertia matrix in case it is known. Thus, this control can be applied to arbitrary manipulators. The resulting robust control guarantees practical stability for both the transformed system and the original system. The transformation is only based on the possible bound of uncertainty.

  • PDF

Output feedback model predictive control for Wiener model with parameter dependent Lyapunov function

  • Yoo, Woo-Jong;Ji, Dae-Hyun;Lee, Sang-Moon;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.685-689
    • /
    • 2005
  • In this paper, we consider a robust output feedback model predictive controller(MPC) design for Wiener model. Nonlinearities that couldn't be represented in static nonlinearity block of Wiener model are regarded as uncertainties in linear block. An dynamic output feedback controller design method is presented for Wiener MPC. According to MPC algorithm, the control law is computed based on linear matrix inequality(LMI)at each sampling time by solving convex optimization. Also, a new parameter dependent Lyapunov function is proposed to get a less conservative condition. The results are illustrated with numerical example.

  • PDF

Lyapunov 안정도 이론을 이용한 가변구조모델추종제어기 설계방법 (A VSMFC Design Method Using the Stability Theory of Lyapunov)

  • 안수관;배준경;박종국
    • 대한전기학회논문지
    • /
    • 제38권12호
    • /
    • pp.983-994
    • /
    • 1989
  • This paper presents a new variable structure model following control algorithm for control of manipulators. The reference model is a simple double integrators and the acceleration input for the robot manipulator consists of a proportional and derivative controller for the purpose of trajectory tracking. The control algorithm is derived by using Lyapunov stability theory instead of S.S < O, as is usual in the current VSS controller design. This proposed control algorithm does not require good knowledge of the parameter in the inertia matrix and is easily extendable to robot manipulators with a higher number of links. Also, the new algorithm is computationally fast because of not requiring the matrix inversion. The computer simulation was carried out to evaluate the performance of the proposed VSMFC.

  • PDF

파라미터 불확실성을 갖는 이산시간 어핀 T-S 퍼지 시스템의 제어기 설계 (Controller Design for Discrete-Time Affine T-S Fuzzy System with Parametric Uncertainties)

  • 이상인;박진배;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2516-2518
    • /
    • 2004
  • This paper proposes a stability condition in discrete-time affine Takagi-Sugeno (T-S) fuzzy systems with parametric uncertainties and then, introduces the design method of a fuzzy-model-based controller which guarantees the stability. The analysis is based on Lyapunov functions that are continuous and piecewise quadratic. The search for a piecewise quadratic Lyapunov function can be represented in terms of linear matrix inequalities (LMIs).

  • PDF

섭동 시스템에 대한 규정된 원 내로의 극점배치 견실성 해석 (Robustness analysis of pole assignment in a specified circle for perturbed systems)

  • 김가규;최봉열
    • 제어로봇시스템학회논문지
    • /
    • 제1권2호
    • /
    • pp.78-82
    • /
    • 1995
  • In this paper, we consider the robustness analysis problem in state space models with linear time invariant perturbations. Based upon the discrete-time Lyapunov approach, sufficient conditions are derived for the eigenvalues of perturbed matrix to be located in a circle, and robustness bounds on perturbations are obtained. Spaecially, for the case of a diagonalizable hermitian matrix the bound is given in terms of the nominal matrix without the solution of Lyapunov equation. This robustness analysis takes account not only of stability robustness but also of certain types of performance robustness. For two perturbation classes resulting bounds are shown to be improved over the existing ones. Examples given include comparison of the proposed analysis method with existing one.

  • PDF

Lyapunov 설계에 입각한 로보트 매니퓰레이터의 적응제어 (Adaptive Control of Robot Manipulators Using Lyapunov Design)

  • 유준;남상우;김병연;박은영
    • 대한전자공학회논문지
    • /
    • 제24권6호
    • /
    • pp.936-941
    • /
    • 1987
  • This paper prexents an adaptive control scheme which adjusts any deviations of the manipulator from a desired trajectory. The scheme combines a new adaptive control and the conventional nominal control which drives the manipulator to the neighborhood of the trajectory. The proposed adaptive control is developed based on the lineatized perturbation equations in the vicinity of the trajectory and the Lyapunov design method, which makes the perturbations exponentially decay and has less computational requirements than the existing ones.

  • PDF

구조물의 에너지를 이용한 확률에 기초한 능동제어 (Probability-Based Active Control Using Structure Energy)

  • Min, Kyung-Won;Hwang, Jae-Seung;Lee, Sang-Hyun;Lan Chung
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.47-55
    • /
    • 2003
  • This paper Presents active control algorithm using probability density function of structural energy. It is assumed that the structural energy under excitation has Rayleigh probability distribution. This assumption is based on the fact that Rayleigh distribution satisfies the condition that the structural energy is always positive and the occurrence probability of minimum energy is zero. The magnitude of control force is determined by the probability that the structural energy exceeds the specified target critical energy, and the sign of control force is determined by Lyapunov controller design method. Proposed control algorithm shows much reduction of peak responses under seismic excitation compared to LQR controller, and it can consider control force limit in the controller design. Also, chattering problem which sometimes occurs in Lyapunov controller can be avoided.

  • PDF

카오스 분석을 통한 용접 품질 정량화 (Weld Quality Quantification through Chaotic Analysis)

  • 조정호;;김철희
    • Journal of Welding and Joining
    • /
    • 제28권1호
    • /
    • pp.72-76
    • /
    • 2010
  • Irregular fluctuation of penetration depth in CW single mode fiber laser welding is analyzed statistically and chaotically. Among various chaos theories, one of the basic concept referred as Lyapunov exponent is applied to the analysis to quantify the irregularity of penetration. Especially, maximal Lyapunov exponent (MLE) is known as the representative value indicating chaotic degree of the system dynamics. MLE calculation method of experimental data is applied to longitudinal spiking defect in fiber laser weld. Laser power modulation is suggested as a remedy then the computed MLE value is compared to CW case. It is shown that the adoption of chaos theory, MLE computation, can be used as a measurement standard to prove the validity of the solutions to prevent the unexpected chaotic behavior of weld through this work.