• 제목/요약/키워드: Lyapunov's stability theory

검색결과 46건 처리시간 0.028초

채터링 감소를 위한 퍼지 슬라이딩 섹터 제어 (Fuzzy-Sliding-Sector Control for Chattering Reduction)

  • 한종길;손영수
    • 한국전자통신학회논문지
    • /
    • 제4권3호
    • /
    • pp.211-216
    • /
    • 2009
  • 채터링 현상은 VSS의 주요한 약점이며 이 문제를 극복하기위하여 많은 연구들이 발표되었다. 슬라이딩 섹터 이론이 최근에 발표되었으며, 본 논문에서는 섹터 내부에 연속입력함수를 가진 슬라이딩 섹터이론을 이용하여 시변 경계층을 가진 퍼지제어를 제안하고, 슬라이딩 섹터에 리아프노프 함수를 이용하여 안정도를 분석한다. 역진자 시스템에 컴퓨터 시물레이션을 통하여 채터링 현상의 제거를 확인한다.

  • PDF

뉴럴네트워크를 이용한 산업용 로봇의 동특성 해석 (Dynamics Analysis of Industrial Robot Using Neural Network)

  • 이진
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 춘계학술대회 논문집
    • /
    • pp.62-67
    • /
    • 1997
  • This paper reprdsents a new scheme of neural network control system analysis the robustues of robot manipulator using digital signal processors. Digtal signal processors, DSPs, are micro-processors that are particularly developed for fast numerical computations involving sums and products of variables. Digital version of most advanced control algorithms can be defined as sums and products of measured variables, thus it can be programmed and executed through DSPs. In additions, DSPs are a s fast in computation as most 32-bit micro-processors and yet at a fraction of their prices. These features make DSPs a viable computational tool in digital implementation of sophisticated controllers. Durng past decade it was proposed the well-established theorys for the adaptive control of linear systems, but there exists relatively little general theory for the adaptive control of nonlinear systems. The proposed neuro network control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method.

  • PDF

채터링 감소를 위한 슬라이딩 섹터를 갖은 슬라이딩 제어 (Sliding Mode Control with Sliding Sector for Chattering Reduction)

  • 한종길;손영수
    • 한국전자통신학회논문지
    • /
    • 제2권3호
    • /
    • pp.168-173
    • /
    • 2007
  • 채터링 현상은 VSS의 주요한 약점이며 이 문제를 극복하기위하여 많은 연구들이 발표되었다. 선형 슬라이딩 섹터 이론이 최근에 발표되었으며, 본 논문에서는 섹터 내부에 연속입력함수를 가진 슬라이딩 섹터이론을 이용하여 비선형시스템 제어하는 새로운 방식을 제안하고, 슬라이딩 섹터에 리아프노프 함수를 이용하여 안정도를 분석한다. 역진자 시스템에 컴퓨터 시뮬레이션을 통하여 채터링 현상의 제거를 확인한다.

  • PDF

전기자동차용 스위치드 릴럭턴스 전동기의 강인 적응형 회생제동제어 (Robust Adaptive Regenerative Braking control of Switched Reluctance Machine for electric vehicles)

  • ;;;이동희;안진우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.649-651
    • /
    • 2015
  • This paper describes a robust adaptive sliding mode control (RASMC) for torque ripple minimization of switched reluctance motor (SRM) using it in automotive application. The objective is to control effort smoothness while the system is under perturbations by unstructured uncertainties, unknown parameters and external disturbances. The control algorithm employs an adaptive approach to remove the need for prior knowledge within the bound of perturbations. This is suitable for tackling the chattering problem in the sliding motion of sliding mode control method. The algorithm then incorporates modifications in order to build a chattering-free modified robust adaptive sliding mode control using Lyapunov stability theory.

  • PDF

간접 적응 퍼지 제어기법에 의한 슬라이딩 제어기 설계 (The Sliding Controller designed by the Indirect Adaptive Fuzzy Control Method)

  • 최창호;임화영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2283-2286
    • /
    • 2000
  • Sliding control is a powerful approach to controlling nonlinear and uncertain systems. Conventional sliding mode control suffer' from high control gain and chattering problem. also it needs mathematic! modeling equations for control systems. A Fuzzy controller is endowed with control rules and membership function that are constructed on the knowledge of expert, as like intuition and experience. but It is very difficult to obtain the exact values which are the membership function and consequent parameters. In this paper, without mathematical modeling equations, the plant parameters in sliding mode are estimated by the indirect adaptive fuzzy method. the proposed algorithm could analyze the system's stability and convergence behavior using Lyapunov theory. so sliding modes are reconstructed and decreased tracking error. moreover convergence time took a short. An example of inverted pendulum is given for demonstration of the robustness of proposed methodology.

  • PDF

Adaptive backstepping control with grey theory for offshore platforms

  • Hung, C.C.;Nguyen, T.
    • Ocean Systems Engineering
    • /
    • 제12권2호
    • /
    • pp.159-172
    • /
    • 2022
  • To ensure stable performance, adaptive regulators with new theories are designed for steel-covered offshore platforms to withstand anomalous wave loads. This model shows how to control the vibration of the ocean panel as a solution using new results from Lyapunov's stability criteria, an evolutionary bat algorithm that simplifies computational complexity and utilities. Used to reduce the storage space required for the method. The results show that the proposed operator can effectively compensate for random delays. The results show that the proposed controller can effectively compensate for delays and random anomalies. The improved prediction method means that the vibration of the offshore structure can be significantly reduced. While maintaining the required controllability within the ideal narrow range.

신경회로망 기반의 적응제어기를 이용한 AUV의 운동 제어 (Motion Control of an AUV Using a Neural-Net Based Adaptive Controller)

  • 이계홍;이판묵;이상정
    • 한국해양공학회지
    • /
    • 제16권1호
    • /
    • pp.8-15
    • /
    • 2002
  • This paper presents a neural net based nonlinear adaptive controller for an autonomous underwater vehicle (AUV). AUV's dynamics are highly nonlinear and their hydrodynamic coefficients vary with different operational conditions, so it is necessary for the high performance control system of an AUV to have the capacities of learning and adapting to the change of the AUV's dynamics. In this paper a linearly parameterized neural network is used to approximate the uncertainties of the AUV's dynamic, and the basis function vector of network is constructed according to th AUV's physical properties. A sliding mode control scheme is introduced to attenuate the effect of the neural network's reconstruction errors and the disturbances in AUV's dynamics. Using Lyapunov theory, the stability of the presented control system is guaranteed as well as the uniformly boundedness of tracking errors and neural network's weights estimation errors. Finally, numerical simulations for motion control of an AUV are performed to illustrate the effectiveness of the proposed techniques.

비선형 시스템의 안정한 직접 적응 제어를 위한 웨이브렛 신경회로망 (Wavelet Network for Stable Direct Adaptive Control of Nonlinear Systems)

  • 서승진;서재용;원경재;연정흠;전홍태
    • 전자공학회논문지S
    • /
    • 제36S권10호
    • /
    • pp.51-57
    • /
    • 1999
  • 본 논문에서는 웨이브렛 신경회로망을 사용하여 알려지지 않은 비선형 시스템을 안정하게 제어하는 문제를 다룬다. 비선형 시스템의 정확한 제어는 함수를 근사화하는 데 사용되는 함수 근사화기의 정확성과 효율성에 의존한다. 그러므로 기준 함수의 선택이 자유롭고 함수 근사화 능력이 뛰어난 웨이브렛 신경회로망을 비선형 시스템 제어에 이용한다. 초기 웨이브렛 신경회로망 제어기를 설정하기 위해서 먼저 제어기 입력의 시-주파수 특성을 분석해서 웨이브렛 신경회로망 변수인 신축과 이동 값을 구한다. 다음에 Lyapunov 안정성 이론에 기초한 적응 법칙을 사용하여 연결강도를 조절한다. 이 직접 적응 웨이브렛 신경회로망 제어기를 비선형 시스템인 역 진자 시스템을 제어하는데 적용한다.

  • PDF

TMS320C31칩을 사용한 산엽용 로보트의 실시간 적응 제어기 설계 (Design of a real time adaptive controller for industrial robot using TMS320C31 chip)

  • 한성현;김용태;이만형;김성권;김진오
    • 한국정밀공학회지
    • /
    • 제13권10호
    • /
    • pp.94-104
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C31) for robotic manpulators to achieve accurate trajectory tracking by the joint angles Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed contorl scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Morever, this scheme does not require an accurate dynamic modeling nor values of manpipulator parameters and payload. Performance of the adaptive controller is illustated by simulation and experimental results for a SCARA robot.

  • PDF

RBF 신경망과 강인 항을 적용한 I-PID 기반 2 자유도 뱀 로봇 머리 제어에 관한 연구 (A Study on I-PID-Based 2-DOF Snake Robot Head Control Scheme Using RBF Neural Network and Robust Term)

  • 김성재;서진호
    • 로봇학회논문지
    • /
    • 제19권2호
    • /
    • pp.139-148
    • /
    • 2024
  • In this paper, we propose a two-degree-of-freedom snake robot head system and an I-PID (Intelligent Proportional-Integral-Derivative)-based controller utilizing RBF (Radial Basis Function) neural network and adaptive robust terms as a control strategy to reduce rotation occurring in the snake robot head. This study proposes a two-degree-of-freedom snake robot head system to avoid complex snake robot dynamics. This system has a control system independent of the snake robot. Subsequently, it utilizes an I-PID controller to implement a control system that can effectively manage rotation at the snake robot head, the robot's nonlinearity, and disturbances. To compensate for the time delay estimation errors occurring in the I-PID control system, an RBF neural network is integrated. Additionally, an adaptive robust term is designed and integrated into the control system to enhance robustness and generate control inputs responsive to signal changes. The proposed controller satisfies stability according to Lyapunov's theory. The proposed control strategy was tested using a 9-degreeof-freedom snake robot. It demonstrates the capability to reduce rotation in Lateral undulation, Rectilinear, and Sidewinding locomotion.