• Title/Summary/Keyword: Lung cells

Search Result 2,115, Processing Time 0.03 seconds

Phosphoserine Phosphatase Promotes Lung Cancer Progression through the Dephosphorylation of IRS-1 and a Noncanonical L-Serine-Independent Pathway

  • Park, Seong-Min;Seo, Eun-Hye;Bae, Dong-Hyuck;Kim, Sung Soo;Kim, Jina;Lin, Weiwei;Kim, Kyung-Hee;Park, Jong Bae;Kim, Yong Sung;Yin, Jinlong;Kim, Seon-Young
    • Molecules and Cells
    • /
    • v.42 no.8
    • /
    • pp.604-616
    • /
    • 2019
  • Phosphoserine phosphatase (PSPH) is one of the key enzymes of the L-serine synthesis pathway. PSPH is reported to affect the progression and survival of several cancers in an L-serine synthesis-independent manner, but the mechanism remains elusive. We demonstrate that PSPH promotes lung cancer progression through a noncanonical L-serine-independent pathway. PSPH was significantly associated with the prognosis of lung cancer patients and regulated the invasion and colony formation of lung cancer cells. Interestingly, L-serine had no effect on the altered invasion and colony formation by PSPH. Upon measuring the phosphatase activity of PSPH on a serine-phosphorylated peptide, we found that PSPH dephosphorylated phospho-serine in peptide sequences. To identify the target proteins of PSPH, we analyzed the protein phosphorylation profile and the PSPH-interacting protein profile using proteomic analyses and found one putative target protein, IRS-1. Immunoprecipitation and immunoblot assays validated a specific interaction between PSPH and IRS-1 and the dephosphorylation of phospho-IRS-1 by PSPH in lung cancer cells. We suggest that the specific interaction and dephosphorylation activity of PSPH have novel therapeutic potential for lung cancer treatment, while the metabolic activity of PSPH, as a therapeutic target, is controversial.

Anti-proliferation Effects of Isorhamnetin on Lung Cancer Cells in Vitro and in Vivo

  • Li, Qiong;Ren, Fu-Qiang;Yang, Chun-Lei;Zhou, Li-Ming;Liu, Yan-You;Xiao, Jing;Zhu, Ling;Wang, Zhen-Grong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.3035-3042
    • /
    • 2015
  • Background: Isorhamnetin (Iso), a novel and essential monomer derived from total flavones of Hippophae rhamnoides that has long been used as a traditional Chinese medicine for angina pectoris and acute myocardial infarction, has also shown a spectrum of antitumor activity. However, little is known about the mechanisms of action Iso on cancer cells. Objectives: To investigate the effects of Iso on A549 lung cancer cells and underlying mechanisms. Materials and Methods: A549 cells were treated with $10{\sim}320{\mu}g/ml$ Iso. Their morphological and cellular characteristics were assessed by light and electronic microscopy. Growth inhibition was analyzed by MTT, clonogenic and growth curve assays. Apoptotic characteristics of cells were determined by flow cytometry (FCM), DNA fragmentation, single cell gel electrophoresis (comet) assay, immunocytochemistry and terminal deoxynucleotidyl transferase nick end labeling (TUNEL). Tumor models were setup by transplanting Lewis lung carcinoma cells into C57BL/6 mice, and the weights and sizes of tumors were measured. Results: Iso markedly inhibited the growth of A549 cells with induction of apoptotic changes. Iso at $20{\mu}g/ml$, could induce A549 cell apoptosis, up-regulate the expression of apoptosis genes Bax, Caspase-3 and P53, and down-regulate the expression of Bcl-2, cyclinD1 and PCNA protein. The tumors in tumor-bearing mice treated with Iso were significantly smaller than in the control group. The results of apoptosis-related genes, PCNA, cyclinD1 and other protein expression levels of transplanted Lewis cells were the same as those of A549 cells in vitro. Conclusions: Iso, a natural single compound isolated from total flavones, has antiproliferative activity against lung cancer in vitro and in vivo. Its mechanisms of action may involve apoptosis of cells induced by down-regulation of oncogenes and up-regulation of apoptotic genes.

Synergistic Effect of Natural Killer Cells and Bee Venom on Inhibition of NCI-H157 Cell Growth

  • Sung, Hee Jin;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.33 no.1
    • /
    • pp.47-56
    • /
    • 2016
  • Objectives : This study examined the effects of Bee venom on apoptosis in NCI-H157 human lung cancer cells and for promoting the apoptosis effects of Natural killer cell. Methods : Bee venom and Natural killer-92 cells were cultured either separately from or together with NCI-H157 cells for 24 hours. To figure out whether Bee venom enhances the cytotoxic effect of Natural Killer-92 cells, a cell viability assay was conducted. To observe the changes in Death receptors, apoptotic regulatory proteins and Nuclear $Factor-{\kappa}B$, western blot analysis was conducted. To observe the effect of Bee venom through an extrinsic mechanism, a transfection assay was conducted. Results : 1. Natural killer-92 cells and Bee venom significantly inhibited the growth of NCI-H157 cells and co-culture had more inhibitory effect than the separate culture. 2. Expressions of Fas, DR3, DR6, Bax, caspase-3, caspase-8, cleaved caspase-3, cleaved caspase-8 were increased, and expressions of Bcl-2 and cIAP were decreased. More efficacy was observed in co-culture than in separate culture. 3. Nuclear $Factor-{\kappa}B$ activation was clearly decreased. And co-culture showed much less activation than separate culture. 4. As a result of treatment for DR-siRNA, the reduced cell viability of NCI-H157 cells and the activity of Nuclear $Factor-{\kappa}B$ were increased. With this, it can be seen that Bee venom and Natural killer-92 cells have an effect on the cancer cells through the extrinsic mechanism. Conclusion : Bee venom is effective in inhibiting the growth of human lung cancer cells. Furthermore Bee venom effectively enhances the functions of Natural killer cells.

Induction of Apoptosis by Realgar on Lung Cancer Cells(A549), Stomach Center Cells(KATO) and Neuroglioma Cells(SNU-1118, U-87MG, U-373MG) (시험관내 폐암(肺癌), 위암(胃癌) 및 신경교종(神經膠腫) 세포(細胞)에 대한 석웅황(石雄黃)의 항암효과(抗癌效果))

  • Bang, Dae-Geon;Kim, Jin-Sung;Ryu, Bong-Ha
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.2
    • /
    • pp.294-303
    • /
    • 2007
  • Objectives : We are aimed to identify anti-tumor effects of realgar on some kinds of cancer cells through molecular biologic methods. Materials & Methods : We used 5 kinds of cancer cell lines: lung cancer cells(A549). stomach cancer cells(KATO) and neuroglioma cells(SUN-1118. U-87MG, U-373MG). We injected the boiled extracts of realgar $50{\mu}g$. $100{\mu}g$ to cultural media( ml )for 24 hours. We measured the killing effects on 5 kinds of cancer cells through inverted and fluorescence microscope, the suppressive effects on viability of those cells via XTT assay and the effects on the revelation of Bax and Bcl-2 proteins related to apoptosis by western blotting. Results : In the changes of morphology, the extracts of realgar showed more significant killing effects on all cancer cells. especially KATO, SNU-1118, U-87MG, U-373MG, than the control group with dose dependence, which was statistically significant. In XTT assay, the extracts of realgar showed more suppressive effects on viability of all cancer cells, especially KATO and U-373MG, than the control group with dose dependence, which was statistically significant. In the revelation of proteins related to apoptosis, the extracts of realgar increased the level of Bax and decreased that of Bcl-2 in all cancer cells with dose dependence. Conclusions : We identified that realgar had more anti-tumor effects on stomach cancer and neuroglioma than on lung cancer in the experiments above. However, these basic experiments were performed in vitro. We hope the anti-tumor effects of realgar will be practically identified through more progressive research.

  • PDF

Inhibitory Effect of Celeriac Extract on Cancer Cell Proliferation (셀러리악 추출물의 암세포 증식 억제 효과)

  • Lee, Jae-Hyeok;Park, Jeong-Sook
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.9
    • /
    • pp.179-183
    • /
    • 2021
  • This study was carried out examine the effect of Celeriac Extract, which contains various anticancer ingredients, on the proliferation inhibition of human-derived cancer cells and the degree of inhibition. The five cell lines used in the experiment were lung cancer cells A549, prostate cancer cells DU-145, uterine cancer cells HeLa, breast cancer cells MCF-7, and liver cancer cells SNU-182. All cancer cells derived from the human body were used, and the inhibition of cancer cell proliferation with Celeriac Extract 10ug/mL, 100ug/mL, and 1000ug/mL was measured using the CCK-8 method. As a result of examining the inhibition of cancer cell proliferation, Celeriac Extract 1000ug/mL showed significant proliferation inhibition in lung cancer cells A549, prostate cancer cells DU-145, uterine cancer cells HeLa, and liver cancer cells SNU-182, and showed a concentration dependence. However, only a concentration-dependent decrease was observed in breast cancer cells MCF-7.In conclusion, it can be seen that the cell proliferation inhibition mechanisms of Celeriac Extract using various human-derived cancer cell lines provide the potential for cancer prevention and therapeutic development.

Bronchial Brushing and Bronchial Washing Cytologic Features of Primary Malignant Fibrous Histiocytoma of the Lung - A Case Report - (폐의 원발성 악성 섬유성 조직구종의 기관지솔질과 기관지세척 검사의 세포학적 소견 - 1예 보고 -)

  • Park, Mi-Ok;Ahn, Wook-Su
    • The Korean Journal of Cytopathology
    • /
    • v.10 no.2
    • /
    • pp.151-155
    • /
    • 1999
  • A case of primary malignant fibrous histiocytoma(MFH) of the lung occurring in a 62-year-old man is presented. After preoperative bronchial blushing and washing cytologic diagnosis of poorly differentiated carcinoma, surgical resection and lymph nodes dissection were performed. Subsequent histologic examination revealed a primary MFH. The diagnosis was confirmed by electron microscopic and immunohistochemical examinations. The review of the bronchial brushing and washing cytologic features disclosed many bipolar and a few unipolar spindle tumor cells with a "comel" configuration, mainly single cells, but also forming loose clusters. The nuclei were elongated and hyperchromatic and contained one or more irregular nucleoli. Scattered bizarre, multinucleated tumor giant cells were also present.

  • PDF

Genomic and Proteomic Profiling of the Cadmium Cytotoxic Response in Human Lung Epithelial Cells

  • Choi, Kwang-Man;Youn, Hyung-Sun;Lee, Mi-Young
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.198-206
    • /
    • 2009
  • Microarray and proteomic expression patterns in response to cadmium exposure were analyzed in human lung epithelial cells. Among 35,000 genes analyzed by cDNA microarray, 228 genes were up-regulated and 99 genes were down-regulated, based on a fold change cut-off value of ${\geq}2$. Combining two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-ToF-MS), 25 of 629 protein spots showed fold changes in expression ${\geq}2$ (17 up-regulated, 8 down-regulated). After comparing the cDNA microarray and proteomic analyses, only transglutaminase 2, translation elongation factor 1 alpha 1, and glyceraldehyde-3-phosphate dehydrogenase showed overlapping signals in the cDNA microarray and proteomic analyses, whereas the remaining differentially expressed proteins showed large discrepancies with respect to mRNA expression.

Therapeutic Potential of the Rhizomes of Anemarrhena asphodeloides and Timosaponin A-III in an Animal Model of Lipopolysaccharide-Induced Lung Inflammation

  • Park, Byung Kyu;So, Kyung Su;Ko, Hye Jung;Kim, Hyun Joong;Kwon, Ki Sun;Kwon, Yong Soo;Son, Kun Ho;Kwon, Soon Youl;Kim, Hyun Pyo
    • Biomolecules & Therapeutics
    • /
    • v.26 no.6
    • /
    • pp.553-559
    • /
    • 2018
  • Investigations into the development of new therapeutic agents for lung inflammatory disorders have led to the discovery of plant-based alternatives. The rhizomes of Anemarrhena asphodeloides have a long history of use against lung inflammatory disorders in traditional herbal medicine. However, the therapeutic potential of this plant material in animal models of lung inflammation has yet to be evaluated. In the present study, we prepared the alcoholic extract and derived the saponin-enriched fraction from the rhizomes of A. asphodeloides and isolated timosaponin A-III, a major constituent. Lung inflammation was induced by intranasal administration of lipopolysaccharide (LPS) to mice, representing an animal model of acute lung injury (ALI). The alcoholic extract (50-200 mg/kg) inhibited the development of ALI. Especially, the oral administration of the saponin-enriched fraction (10-50 mg/kg) potently inhibited the lung inflammatory index. It reduced the total number of inflammatory cells in the bronchoalveolar lavage fluid (BALF). Histological changes in alveolar wall thickness and the number of infiltrated cells of the lung tissue also indicated that the saponin-enriched fraction strongly inhibited lung inflammation. Most importantly, the oral administration of timosaponin A-III at 25-50 mg/kg significantly inhibited the inflammatory markers observed in LPS-induced ALI mice. All these findings, for the first time, provide evidence supporting the effectiveness of A. asphodeloides and its major constituent, timosaponin A-III, in alleviating lung inflammation.

Effects of Ribosomal Protein L39-L on the Drug Resistance Mechanisms of Lung Cancer A549 Cells

  • Liu, Hong-Sheng;Tan, Wen-Bin;Yang, Ning;Yang, Yuan-Yuan;Cheng, Peng;Liu, Li-Juan;Wang, Wei-Jie;Zhu, Chang-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3093-3097
    • /
    • 2014
  • Background: Cancer is a major threat to the public health whether in developed or in developing countries. As the most common primary malignant tumor, the morbidity and mortality rate of lung cancer continues to rise in recent ten years worldwide. Chemotherapy is one of the main methods in the treatment of lung cancer, but this is hampered by chemotherapy drug resistance, especially MDR. As a component of the 60S large ribosomal subunit, ribosomal protein L39-L gene was reported to be expressed specifically in the human testis and human cancer samples of various tissue origins. Materials and Methods: Total RNA of cultured drug-resistant and susceptible A549 cells was isolated, and real time quantitative RT-PCR were used to indicate the transcribe difference between amycin resistant and susceptible strain of A549 cells. Viability assay were used to show the amycin resistance difference in RPL39-L transfected A549 cell line than control vector and null-transfected A549 cell line. Results: The ribosomal protein L39-L transcription level was 8.2 times higher in drug-resistant human lung cancer A549 cell line than in susceptible A549 cell line by quantitative RT-PCR analysis. The ribosomal protein L39-L transfected cells showed enhanced drug resistance compared to plasmid vector-transfected or null-transfected cells as determined by methyl tritiated thymidine (3H-TdR) incorporation. Conclusions and Implications for Practice: The ribosomal protein L39-L gene may have effects on the drug resistance mechanism of lung cancer A549 cells.

Combination Effects of 7β-Hydroxycholesterol and Radiation in Human Lung Cancer Cells

  • KANG Kyoung Ah;LEE Kyoung Hwa;CHAE Sungwook;KIM Dae Yong;PARK Moon Taek;LEE Su Jae;LEE Yun Sil;HYUN Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.220-226
    • /
    • 2005
  • The present study was performed to evaluate combination effect of 7$\beta$-hydroxycholesterol (7$\beta$-OHC) and $\gamma$-radiation in NCI-H460 human lung cancer cells. 7$\beta$-OHC in combination with $\gamma$-irradiation has an enhanced effect in decreasing clonogenic survival and increasing cellular DNA damage. Pretreatment of cells with 7$\beta$-OHC enhanced radiation-induced apoptosis. Apoptosis of the cells by combined treatment of 7$\beta$-OHC and $\gamma$-irradiation was associated with reactive oxygen species generation and loss of mitochondrial membrane potential, resulting in the activation of caspase 9 and caspase 3. The combined treatment also resulted in an increased G1 cell cycle distribution. These results indicate that 7$\beta$-OHC shows the additive effect of radiation sensitivity in human lung carcinoma cells in vitro.