• Title/Summary/Keyword: Lunar In Situ Construction

Search Result 12, Processing Time 0.019 seconds

Geographic Distribution Analysis of Lunar In-situ Resource and Topography to Construct Lunar Base (달 기지 건설을 위한 달 현지 자원 및 지형의 공간 분포 분석)

  • Hong, Sungchul;Kim, Young-Jae;Seo, Myungbae;Shin, Hyu-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.669-676
    • /
    • 2018
  • As the Moon's scientific, technological, and economic value has increased, major space agencies around the world are leading lunar exploration projects by establishing a road map to develop lunar resources and to construct a lunar base. In addition, as the lunar base construction requires huge amounts of resources from the Earth, lunar in-situ construction technology is being developed to produce construction materials from local lunar resources. On the other hand, the characteristics of lunar topography and resources vary spatially due to the crustal and volcanic activities inside the Moon as well as the solar wind and meteorites from outside the Moon. Therefore, in this paper, the geospatial analysis of lunar resource distribution was conducted to suggest regional consideration factors to apply the lunar in situ construction technologies. In addition, the lunar topographic condition to select construction sites was suggested to ensure the safe landing of a lunar lander and the easy maneuvering of a rover. The lunar topographic and resource information mainly from lunar orbiters were limited to the lunar surface with a low spatial resolution. Rover-based lunar exploration in the near future is expected to provide valuable information to develop lunar in situ construction technology and select candidate sites for lunar base construction.

Review of the Sintering Technologies Using In-situ Resources for Lunar Construction and Future Works (달 기지 건설을 위한 현지재료 활용 소결 기술 및 향후 과제)

  • Ryu, Geun U;Kim, Young-Jae;Shin, Hyu-Soung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.839-856
    • /
    • 2022
  • Over the last decade, the competition for space development has accelerated. The world's largest space agencies are aiming toward long-term lunar exploration and manned missions. For sustainable and safe lunar exploration, construction of infrastructures that include various habitats is essential. However, transporting construction materials from Earth for lunar base construction is extremely expensive. Thus, technologies for manufacturing construction materials using in-situ resources from the moon should be advanced. The sintering techniques have been actively studied using lunar soil. In this review, five sintering technologies, including radiation, solar, spark plasma, laser, and microwave sintering, for manufacturing construction materials using lunar soil are introduced, and future research is discussed.

Research on Development of Construction Spatial Information Technology, using Rover's Camera System (로버 카메라 시스템을 이용한 건설공간정보화 기술의 개발 방안 연구)

  • Hong, Sungchul;Chung, Taeil;Park, Jaemin;Shin, Hyu-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.630-637
    • /
    • 2019
  • The scientific, economical and industrial values of the Moon have been increased, as massive ice-water and rare resource were founded from the lunar exploration missions. Korea and other major space agencies in the world are competitively developing the ISRU (In Situ Resource Utilization) technology to secure future lunar resource as well as to construct the lunar base. To prepare for the lunar construction, it is essential to develop the rover based construction spatial information technology to provide a decision-making aided information during the lunar construction process. Thus, this research presented the construction spatial information technology based upon rover's camera system. Specifically, the conceptual design of rover based camera system was designed for acquisition of a rover's navigation image, and lunar terrain and construction images around the rover. The reference architecture of the rover operation system was designed for computation of the lunar construction spatial information. Also, rover's localization and terrain reconstruction methods were introduced considering the characteristics of lunar surface environments. It is necessary to test and validate the conceptual design of the construction spatial information technology. Thus, in the future study, the developed rover and rover operation system will be applied to the lunar terrestrial analogue site for further improvements.

Trend Analysis of Lunar Exploration Missions for Lunar Base Construction (달 기지 건설을 대비한 국내외 달 탐사 동향 분석)

  • Hong, Sungchul;Shin, Hyu-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.144-152
    • /
    • 2018
  • Lunar exploration, which was led by the United States and the former Soviet Union, ceased in the 1970s. On the other hand, since massive lunar ice deposits and rare resources were found in 1990s, European Union, China, Japan, and India began to participate in lunar exploration to secure future lunar resource as well as to construct a lunar base. In the near future, it is expected that national space agencies and private industries will participate in the lunar exploration together. Their missions will include the exploration and sample return of lunar resources. Lunar resources have a close relationship with the lunar in-situ resource utilization (ISRU). To construct a lunar base, it is inevitable to bring huge amounts of resources from Earth. Water and oxygen, however, will need to be produced from local lunar resources and lunar terrain feature will need to be used to construct the lunar base. Therefore, in this paper, the global trends on lunar exploration and lunar construction technology are investigated and compared along with the ISRU technology to support human exploration and construct a lunar base on the Moon's surface.

Global Trends of In-Situ Resource Utilization (우주 현지자원활용 글로벌 동향 )

  • Dong Young Rew
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.199-212
    • /
    • 2023
  • In contrast to the short-term nature of lunar missions in the past, lunar missions in new space era aim to extend the presence on the lunar surface and to use this capability for the Mars exploration. In order to realize extended human presence on the Moon, production and use of consumables and fuels required for the habitation and transportation using in-situ resources is an important prerequisite. The Global Exploration Roadmap presented by the International Space Exploration Coordination Group (ISECG), which reflects the space exploration plans of participating countries, shows the phases of progress from lunar surface exploration to Mars exploration and relates in-situ resource utilization (ISRU) capabilities to each phase. Based on the ISRU Gap Assessment Report from the ISECG, ISRU technology is categorized into in-situ propellant and consumable production, in-situ construction, in-space manufacturing, and related areas such as storage and utilization of products, power systems required for resource utilization. Among the lunar resources, leading countries have prioritized the utilization of ice water existing in the permanent shadow region near the lunar poles and the extraction of oxygen from the regolith, and are preparing to investigate the distribution of resources and ice water near the lunar south pole through unmanned landing missions. Resource utilization technologies such as producing hydrogen and oxygen from water by hydroelectrolysis and extracting oxygen from the lunar regolith are being developed and tested in relevant lunar surface analogue environments. It is also observed that each government emphasizes the use and development of the private sector capabilities for sustainable lunar surface exploration by purchasing lunar landing services and providing opportunities to participate in resource exploration and material extraction.

Development of a New Lunar Regolith Simulant using an Automated Program Framework

  • GyeongRok Kwon;Kyeong Ja Kim;Eungseok Yi
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.79-85
    • /
    • 2024
  • Nowadays, the trend in lunar exploration missions is shifting from prospecting lunar surface to utilizing in-situ resources and establishing sustainable bridgehead. In the past, experiments were mainly focused on rover maneuvers and equipment operations. But the current shift in trend requires more complex experiments that includes preparations for resource extraction, space construction and even space agriculture. To achieve that, the experiment requires a sophisticated simulation of the lunar environment, but we are not yet prepared for this. Particularly, in the case of lunar regolith simulants, precise physical and chemical composition with a rapid development speed rate that allows different terrains to be simulated is required. However, existing lunar regolith simulants, designed for 20th-century exploration paradigms, are not sufficient to meet the requirements of modern space exploration. In order to prepare for the latest trends in space exploration, it is necessary to innovate the methodology for producing simulants. In this study, the basic framework for lunar regolith simulant development was established to realize this goal. The framework not only has a sample database and a database of potential simulation target compositions, but also has a built-in function to automatically calculate the optimal material mixing ratio through the particle swarm optimization algorithm to reproduce the target simulation, enabling fast and accurate simulant development. Using this framework, we anticipate a more agile response to the evolving needs toward simulants for space exploration.

Experimental Evaluation of Ice-regolith Mixture Settlement Caused by Lunar Ice Extraction (달 얼음-월면토 결합 형태에 따른 얼음 추출로 발생하는 침하량 평가)

  • Lee, Jangguen;Gong, Zheng;Jin, Hyunwoo;Ryu, Byung Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.6
    • /
    • pp.13-19
    • /
    • 2023
  • Lunar ice is a resource available for future human exploration in deep space and long-term extraterrestrial habitat. However, the origin and nature of lunar ice remains unclear. In addition to remote sensing, international space agencies are competitively planning and conducting missions for lunar surface exploration to determine the existence and resource extent of lunar ice. If a sufficient amount of lunar ice is confirmed, its future in-situ resource utilization is expected to be greatly beneficial. However, due to ice extraction, settlement may occur, which should be taken into account from a geotechnical engineering perspective. Herein, experimental investigations of the potential settlement caused by lunar ice extraction were conducted and different textures of lunar ice were simulated. Consequently, it was confirmed that significant settlement occurs even at the initial water content of ~10% in lunar regolith simulant-ice-mixed soil.

Investigation of Technical Requirements for a Protective Shield with Lunar Regolith for Human Habitat (월면토를 이용한 달 유인 우주기지 보호층의 기술적 요구조건에 관한 연구)

  • Lee, Jangguen ;Gong, Zheng;Jin, Hyunwoo ;Ryu, Byung Hyun;Kim, Young-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.10
    • /
    • pp.49-55
    • /
    • 2023
  • The discovery of lunar ice in the lunar polar region has fueled international interest in in situ resource utilization (ISRU) and the construction of lunar habitats. Unlike Earth's atmosphere, the Moon presents unique challenges, including frequent meteoroid impacts, direct exposure to space radiation, and extreme temperature variations. To safeguard lunar habitats from these threats, the construction of a protective shield is essential. Lunar regolith, as a construction material, offers distinct advantages, reducing transportation costs and ensuring a sustainable supply of raw materials. Moreover, it streamlines manufacturing, integration schedules, and enables easy repairs and modifications without Earth resupply. Adjusting the shield's thickness within the habitat's structural limits remains feasible as lunar conditions evolve. Although extensive research on protective shields using lunar regolith has been conducted, unresolved conflicts persist regarding shield requirements. This study conducts a comprehensive analysis of the primary lunar threats and suggests a minimum shield thickness of 2 m using lunar regolith. Furthermore, it outlines the necessary technology for the rapid construction of such protective shields.

Assessment of the Coupled Electric-Thermal Numerical Model for Microwave Sintering of KLS-1 (한국형 인공월면토(KLS-1) 마이크로파 소결을 위한 전기장-열 연계해석 모델 평가)

  • Jin, Hyunwoo;Go, Gyu-Hyun;Lee, Jangguen;Shin, Hyu-Soung;Kim, Young-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.5
    • /
    • pp.35-46
    • /
    • 2022
  • The in-situ resource utilization (ISRU) for sustainable lunar surface and deep space explorations has recently gained attention. Also, research on the development of construction material preparation technology using lunar regolith is in progress. Microwave sintering technology for construction material preparation does not require a binder and is energy efficient. This study applies microwave sintering technology to KLS-1, a Korean lunar simulant. It is crucial to secure the homogeneity to produce a sintered specimen for construction material. Therefore, understanding the interactions between microwaves, cavities, and raw materials is required. Using a numerical model in terms of efficient assessment of several cases and establishment of equipment operating conditions is a very efficient approach. Therefore, this study also proposes and verifies a coupled electric-thermal numerical model through cross-validation and comparison with experimental results. The numerical model proposed in this study will be used to present an efficient method for producing construction material using microwave sintering technology.

In-Situ Resources Utilization Technologies for Human Activities on the Moon (달에서 인류 활동을 위한 달 현지자원활용(In-Situ Resources Utilization) 기술)

  • Geunu, Ryu;Byunghyun, Ryu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.12
    • /
    • pp.41-53
    • /
    • 2022
  • After industrialization has been started, mankind needs and consumes more resources. Now, the resources depletion is a serious problem in the Earth. However, there are infinite resources in the Space. Especially, the Moon is the closest planet and has much resources, including Helium-3 and rare earths, which are needed to human being in the future. Humanity needs to reside on the moon to harvest these resources. For the resident, much resources, such as food, construction, and industrial materials, are needed. However, to transport these resources to the Moon from the Earth, an astronomical cost should be consumed. Thus, research is underway to support human activities by procuring resources locally. This is called In-Situ Resources Utilization (ISRU), which is the essential technology for the space development. In this paper, the reason why ISRU is essential and the its status are introduced and future research projects will be explained.