Browse > Article
http://dx.doi.org/10.7843/kgs.2022.38.5.35

Assessment of the Coupled Electric-Thermal Numerical Model for Microwave Sintering of KLS-1  

Jin, Hyunwoo (Dept. of Future & Smart Construction Research, Korea Institute of Civil Engrg. and Building Technology)
Go, Gyu-Hyun (Dept. of Civil Engineering, Kumoh National Institute of Tech)
Lee, Jangguen (Dept. of Future & Smart Construction Research, Korea Institute of Civil Engrg. and Building Technology)
Shin, Hyu-Soung (Dept. of Future & Smart Construction Research, Korea Institute of Civil Engrg. and Building Technology)
Kim, Young-Jae (Dept. of Future & Smart Construction Research, Korea Institute of Civil Engrg. and Building Technology)
Publication Information
Journal of the Korean Geotechnical Society / v.38, no.5, 2022 , pp. 35-46 More about this Journal
Abstract
The in-situ resource utilization (ISRU) for sustainable lunar surface and deep space explorations has recently gained attention. Also, research on the development of construction material preparation technology using lunar regolith is in progress. Microwave sintering technology for construction material preparation does not require a binder and is energy efficient. This study applies microwave sintering technology to KLS-1, a Korean lunar simulant. It is crucial to secure the homogeneity to produce a sintered specimen for construction material. Therefore, understanding the interactions between microwaves, cavities, and raw materials is required. Using a numerical model in terms of efficient assessment of several cases and establishment of equipment operating conditions is a very efficient approach. Therefore, this study also proposes and verifies a coupled electric-thermal numerical model through cross-validation and comparison with experimental results. The numerical model proposed in this study will be used to present an efficient method for producing construction material using microwave sintering technology.
Keywords
Construction material; Coupled electric-thermal numerical model; In-situ resource utilization; Microwave sintering; Validation;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Agrawal, D. (2006), "Microwave Sintering of Ceramics Composites and Metallic Materials and Melting of Glasses", Trans. Indian Ceram. Soc., Vol.65, No.3, pp.129-144.   DOI
2 Sikalidis, C. (2011), "Advances in ceramics: Synthesis and characterization, processing and specific applications", IntechOpen.
3 Ahn, S.H. and Lee, W.S. (2020), "Uniform Microwave Heating System Design and Evaluation with an Orthogonally Slot-loaded Array Waveguide", Microw. Opt. Technol. Lett., Vol.62, pp.3419- 3424.   DOI
4 ASTM International (2019), "Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass", ASTM International, West Conshohocken, PA, USA.
5 Bae, S.H., Jeong, M.G., Kim, J.H., and Lee, W.S. (2017), "A Continuous Power-controlled Microwave Belt Drier Improving Heating Uniformity", IEEE Microw. Wirel. Compon. Lett., Vol.27, No.5, pp.527-529.   DOI
6 Bansal, A. and Sharma, A.K. (2014), "3D Electromagnetic Field Simulation of Silicon Carbide and Grap hite Plate in Microwave Oven", Int. J. Mech. Eng. Rob. Res., Specieal Issue, Vol.1, No.1, pp.7-12.   DOI
7 Brent, S. (2019), "Principles for a Practical Moon base", Acta Astronaut., Vol.160, pp.116-124.   DOI
8 Colozza, A.J (1991), "Analysis of Lunar Regolith Thermal Energy Storage", Lewis Research Center Group in Sverdrup Technology, Inc., NASA Contractor Report 189073, Cleveland, Ohio, USA.
9 Comsol Inc, Comsol Multiphysics User's Manual Ver. 5.5, 2020. USA.
10 Fateri, M. and Gebhardt, A. (2015), "Process Parameters Development of Selective Laser Melting of Lunar Regolith for On-site Manufacturing Applications", Int. J. Appl. Ceram. Tec., Vol.12, No.1, pp.46-52.   DOI
11 Gao, X., Liu, X., Yan, P., Li, X., and Li, H. (2019), "Numerical Analysis and Optimization of the Microwave Inductive Heating Performance of Water Film", Int. j. heat mass transf., Vol.139, pp.17-30.   DOI
12 Halim, S.A. (2016), "Biomass pyrolysis using microwave technology", Univ. Sheffield, PhD thesis, Sheffield, UK.
13 Halim, S.A. and Swithenbank, J. (2019), "Simulation Study of Parameters Influencing Microwave Heating of Biomass", J. Energy Inst., Vol.92, pp.1191-1212.   DOI
14 Kim, Y.J., Ryu, B.H., Jin, H., Lee, J., and Shin, H.S. (2021), "Microstructural, Mechanical, and Thermal Properties of Microwave-sintered KLS-1 Lunar Regolith Simulant", Ceram. Int., Vol.47, pp.26891-26897.   DOI
15 Jeong, C.H., Ahn, S.H., and Lee, W.S. (2019), "Four-kilowatt Homogeneous Microwave Heating System Using a Power-controlled Phase-shifting Mode for Improved Heating Uniformity", Electron. Lett., Vol.55, No.8, pp.465-467.   DOI
16 Kang, Y. and Morita, K. (2006), "Thermal Conductivity of the CaO-Al2O3-SiO2 system", ISIJ Int., Vol.46, No.3, pp.420-426.   DOI
17 Sato, M., Muton, T., Shimotuma, T., Ida, K., Motojima, O., Fujiwara, M., Takayama, S., Mizuno, M., Obata, S., Ito, K., Hirai, T., and Shimada, T. (2003), "Recent Development of Microwave Kilns for Industries in Japan", Proceedings of 3rd World Congress on Microwave and Radio Frequency Applications.
18 Lim, S. and Anand, M. (2019), "Numerical Modelling of the Microwave Heating behaviour of Lunar Regolith", Planet Space Sci., Vol.179, No.104723.   DOI
19 Li, S., Lucey, P.G., Milliken, R.E., Hayne, P.O., Fisher, E., Williams, J.P., Hurley, D.M., and Elphic, R.C. (2018), "Direct Evidence of Surface Exposed Water Ice in the Lunar Polar Regions", Proc. Nat. Acad. Sci., USA.
20 Lim, S., Anand, M., and Rouse, T. (2015), "Estimation of Energy and Material Use of Sintering-based Construction for a Lunar Outpost - with the Example of SinterHab Module Design", 46th Lunar. Planet. Sci. Conf., UK, No. 1076.
21 Lin, T.D., Skaar, S.B., and O'Gallagher, J.J. (1997), "Proposed Remote-control, Solar-powered Concrete Production Experiment on the Moon", J. Aerospace Eng., Vol.10, No.2, pp.104.109.   DOI
22 Nozette, S., Lichtenberg, C.L., Spudis, P., Bonner, R., Ort, W., Malaret, E., Robinson, M., and Shoemaker, E.M. (1996), "The Clementine Bistatic Radar Experiment", Sci., Vol.274, No.5292, pp.1495-1498.   DOI
23 Nozette, S., Spudis, P.D., Robinson, M.S., Bussey, D.B.J., Lichtenberg, C., and Bonner, R. (2001), "Integration of Lunar Polar Remotesensing Data Sets: Evidence for Ice at the Lunar South Pole", J. Geophys. Res.-Planet, Vol.106, No.E10, pp.23253-23266.   DOI
24 Ryu, B.H., Baek, Y., Kim, Y.S., and Chang, I. (2015), "Basic Study for a Korean Lunar Simulant (KLS-1) Development", J. Korean Geotech. Soc., Vol.31, No.7, pp.53-63.   DOI
25 Ryu, B.H., Wang, C.C., and Chang, I. (2018), "Development and Geotechnical Engineering Properties of KLS-1 Lunar Simulant", J. Aerosp. Eng., Vol.31, No.1, pp.0417083-1-11.
26 Sauerborn, M., Neumann, A., Seboldt, W., and Diekmann, B. (2004), "Solar Heated Vacuum Pyrolysis of Lunar Soil", 35th COSPAR Scientific Assembly.
27 Taylor, L.A. and Meek, T.T. (2005), "Microwave Sintering of Lunar Soil: Properties, Theory, and Practice", J. Aerosp. Eng., Vol.18, No.3, pp.188-196.   DOI
28 Ahn, S.H., Jeong, C.H., Lim, D.M., and Lee, W.S. (2020), "Kilowattlevel Power-controlled Microwave Applicator with Multiple Slotted Waveguides for Improving Heating Uniformity", IEEE Trans. Microw. Theory Tech., Vol.68, No.7, pp.2867-2875.   DOI
29 Balla, V.K., Roberson, L.B., O'Connor, G.W., Trigwell, S., Bose, S., and Bandyopadhyay, A. (2012), "First Demonstration on Direct Laser Fabrication of Lunar Regolith Parts", Rapid Prototyping J., Vol.18, No.6, pp.451-457.   DOI
30 Schreiner, S.S., Dominguez, J.A., Sibille, L., and Hoffman, J.A. (2016), "Thermophysical Property Models for Lunar Regolith", Adv. Space Res., Vol.57, No.5, pp.1209-1222.   DOI
31 Taylor, L.A., Pieters, C., Patchen, A., Taylor, D.-H.S., Morris, R.V., Keller, L.P., and McKay, D.S. (2010), "Mineralogical and Chemical Characterization of Lunar Highland Soils: Insights into the Space Weathering of Soils on Airless Bodies", J. Geophys. Res.-Planet, Vol.115, E02002, pp.1-14.
32 Jin, H., Lee, J., Ryu, B.H., Shin, H.S., and Kim, Y.J. (2021), "The Experimental Assessment of Influence Factors on KLS-1 Microwave Sintering", J. Korean Geotech. Soc., Vol.37, No.2, pp.5-17.   DOI
33 Christian, S., Lukas, W., and Thomas, R. (2018), "Sustainable Challenges on the Moon", Curr. Opin. Green Sust., Vol.9, pp. 8-12.   DOI
34 Cremers, C.J. (2012), "Thermophysical Properties of Apollo 14 Fines", J. Geophys. Res., Vol.80, No.32, pp.4466-4470.   DOI
35 Hintze, P.E., Curran, J., and Back, T. (2009), "Lunar Surface Stabilization via Sintering or the Use of Heat Cured Polymers", 47th AIAA Aerospace Science Meeting including The New Horizons Forum and Aerospace Exposition.
36 Langseth, M.G., Clark, S.P., Chute, J.L., Keihm, S.J., and Wechsler, A.E. (1972), "The Apollo 15 Lunar heat-flow measurement", The Moon, Vol.4, No.3, pp.390-410.   DOI
37 Lim, S., Prabhu, V.L., Anand, M., and Taylor, L.A. (2017), "Extraterrestrial Construction Processes - Advancements, Opportunities and Challenges", Adv. Space Res., Vol.60, No.7, pp.1413-1429.   DOI
38 Weiren, W., Chunlai, L., Wei, Z., Hongbo, Z., Jianjun, L., Weibin, W., Yan, S., Xin, R., Jun, Y., Dengyun, Y., Guangliang, D., Chi, W., Zezhou, S., Enhai, L., Jianfeng, Y., and Ziyuan, O. (2019), "Lunar Farside to be Explored by Chang'e-4", Nat. Geosci., Vol.12, pp.222-223.   DOI
39 Jin, H., Kim, Y., Ryu, B.H., and Lee, J. (2020), "Experimental Assessment of Manufacturing System Efficiency and Hydrogen Reduction Reaction for Fe(0) Simulation for KLS-1", J. Korean Geotech. Soc., Vol.36, No.8, pp.17-25.   DOI
40 Pert, E., Carmel, Y., Birnboim, A., Olorunyolemi, T., Gershon, D., Calame, J., Lloyd, I.K., and Wilson Jr., O.C. (2001), "Temperature Measurements during Microwave Processing: The Significance of Thermocouple Effects", J. Am. Ceram. Soc., Vol.84, No.9, pp. 1981-1986.   DOI
41 Meurisse, A., Cowley, A., Cristoforetti, S., Makaya, A., Pambaguian, L., and Sperl, M. (2018), "Solar 3D Printing of Lunar Regolith", Acta Astronaut., Vol.152, pp.800-810.   DOI
42 Goulas, A., Binner, J.G.P., Harris, R.A., and Friel, R.J. (2017), "Assessing Extraterrestrial Regolith Material Simulants for In-situ Resource Utilisation based 3D Printing", Appl. Mater. Today, Vol.6, pp.54-61.   DOI