• 제목/요약/키워드: Lumped Parameter Analysis

Search Result 127, Processing Time 0.025 seconds

Dynamic Chanrateristics of Spindle for the External Cylindrical Grinding Machine Considered the Shell Mode Vibration of Wheel (Wheel의 원반 진동을 고려한 외경연삭 주축의 동특성)

  • 하재훈;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1000-1004
    • /
    • 1995
  • In the case of the external cylindrical grinding machine, the grinding mechanism can cause a wheel to vibrate due to a wheel cutter. This phenomena will bring about the unsymmetric wear up to high frequency without any relation of rotational speed. So far, when the grinding spindle is analyzed, it is assumed that a wheel is considered as lumped mass at the endof a beam. Nowadays, there is a tendency to use the wheel with a lsrge diameter or CBN wheel to achieve the high speed and accuracy grinding performance. Therefore, this kind of assumption is no longer valid. At the analysis of the grinding spindle, the parameter which dapends on the dynamic characteristics is a combination force between each part. For example, there is the tightness torque of a bolt and taper element in the grindle. In addition, the material property of the wheel can contribute the dynamic characteristics. This paper shows the mode participation of the shell mode of the wheel in the grindle and the dynamic characteristics according to the parameters which are the configuration of the flange and tightness torque of a bolt and taper. Modal parameter of the wheel, flange and the spindle can be extracted through frequency response function obtained by modal test. After that, by changing the tightness torque and kinds of wheel, we could accomplish the test in the whole combined grinding spindle. To perform modal analysis of vibration characteristics in the grinding spindle, we could develop the model of finite element method.

  • PDF

Development of lumped model to analyze the hydrological effects landuse change (토지이용 변화에 따른 수문 특성의 변화를 추적하기 위한 Lumped모형의 개발)

  • Son, Ill
    • Journal of the Korean Geographical Society
    • /
    • v.29 no.3
    • /
    • pp.233-252
    • /
    • 1994
  • One of major advantages of Lumped model is its ability to simulate extended flows. A further advantage is that it requires only conventional, readily available hydrological data (rainfall, evaporation and runoff). These two advantages commend the use of this type of model for the analysis of the hydrological effects of landuse change. Experimental Catchment(K11) of Kimakia site in Kenga experienced three phases of landuse change for sixteen and half years. The Institute of Hydrology offered the hydrological data from the catchment for this research. On basis of Blackie's(l972) 9-parameter model, a new model(R1131) was reorganized in consideration of the following aspects to reflect the hydrological characteristics of the catchment: 1) The evapotranspiration necessary for the landuse hydrology, 2) high permeable soils, 3) small catchment, 4) input option for initial soil moisture deficit, and 5) othel modules for water budget analysis. The new model is constructed as a 11-parameter, 3-storage, 1-input option model. Using a number of initial conditions, the model was optimized to the data of three landuse phases. The model efficiencies were 96.78%, 97.20%, 94.62% and the errors of total flow were -1.78%, -3.36%, -5.32%. The bias of the optimized models were tested by several techniques, The extended flows were simulated in the prediction mode using the optimized model and the data set of the whole series of experimental periods. They are used to analyse the change of daily high and low-flow caused by landuse change. The relative water use ratio of the clearing and seedling phase was 60.21%, but that of the next two phases were 81.23% and 83.78% respectively. The annual peak flows of second and third phase at a 1.5-year return period were decreased by 31.3% and 31.2% compared to that of the first phase. The annual peak flow at a 50-year return period in the second phase was an increase of only 4.8%, and that in the third phase was an increase of 12.9%. The annual minimum flow at a 1.5-year return period was decreased by 34.2% in the second phase, and 34.3% in the third phase. The changes in the annual minimum flows were decreased for the larger return periods; a 20.2% decrease in the second phase and 20.9% decrease in the third phase at a 50-year return period. From the results above, two aspects could be concluded. Firstly, the flow regime in Catchment K11 was changed due to the landuse conversion from the clearing and seedling phade to the intermediate stage of pine plantation. But, The flow regime was little affected after the pine trees reached a certain height. Secondly, the effects of the pine plantation on the daily high- and low-flow were reduced with the increase in flood size and the severity of drought.

  • PDF

Optimal Design of Five-Phase Permanent Magnet Assisted Synchronous Reluctance Motor for High Speed Railroad Traction System (고속철도 추진용 5상 영구자석 저감형 동기전동기의 최적설계)

  • Baek, Jeihoon;Kim, Myung Yong;Yi, Kyung-Pyo
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.588-594
    • /
    • 2017
  • Permanent magnet assisted synchronous reluctance motors (PMa-SynRM) show higher efficiency and power density compared to conventional induction motors for high speed railroad traction systems. Furthermore, 5-phase PMa-SynRMs have lower torque ripple and higher power density than 3-phase systems. Therefore, the 5-phase PMa-SynRM is suitable for high-speed railway traction systems. In this study, 3kw 3-phase and 5-phase PMa-SynRM models were optimized using lumped parameter model and genetic algorithm, and their characteristics were compared. The optimized models are fine-tuned using finite element analysis. The final models of the 3-phase and 5-phase PMa-SynRMs are fabricated and tested to verify the analysis results.

The Selection of Optimal Distributions for Distributed Hydrological Models using Multi-criteria Calibration Techniques (다중최적화기법을 이용한 분포형 수문모형의 최적 분포형 선택)

  • Kim, Yonsoo;Kim, Taegyun
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.15-23
    • /
    • 2020
  • The purpose of this study is to investigate how the degree of distribution influences the calibration of snow and runoff in distributed hydrological models using a multi-criteria calibration method. The Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) developed by NOAA-National Weather Service (NWS) is employed to estimate optimized parameter sets. We have 3 scenarios depended on the model complexity for estimating best parameter sets: Lumped, Semi-Distributed, and Fully-Distributed. For the case study, the Durango River Basin, Colorado is selected as a study basin to consider both snow and water balance components. This study basin is in the mountainous western U.S. area and consists of 108 Hydrologic Rainfall Analysis Project (HRAP) grid cells. 5 and 13 parameters of snow and water balance models are calibrated with the Multi-Objective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm. Model calibration and validation are conducted on 4km HRAP grids with 5 years (2001-2005) meteorological data and observations. Through case study, we show that snow and streamflow simulations are improved with multiple criteria calibrations without considering model complexity. In particular, we confirm that semi- and fully distributed models are better performances than those of lumped model. In case of lumped model, the Root Mean Square Error (RMSE) values improve by 35% on snow average and 42% on runoff from a priori parameter set through multi-criteria calibrations. On the other hand, the RMSE values are improved by 40% and 43% for snow and runoff on semi- and fully-distributed models.

Dynamic Parameter Analysis of Bolted Joint (체결력에 따른 볼트결합부의 동적 파라미터 해석)

  • Baek, Sung-Nam;Ji, Tae-Han;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.53-67
    • /
    • 1996
  • The dynamic characteristics of mechanical structure are strongly affected by the properties of joint parameters. In this study, the test structures are constructed with two beams which are clamped by bolts, and a bolted joint which is modelled as a lumped stiffness element. To idientify the dynamic joint parameters with variance of clamping torque of bolts, the sensitivity analysis and the mode energy analysis methods are investigated experimentally. As a reult of these two methods, stiffnesses of bolted joint are experimentally found to increase as the clamping torque increases. These stiffnesses identified from the sensitivity analysis and the mode energy analysis method have some difference.

Nonlinear Backstepping Control of SynRM Drive Systems Using Reformed Recurrent Hermite Polynomial Neural Networks with Adaptive Law and Error Estimated Law

  • Ting, Jung-Chu;Chen, Der-Fa
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1380-1397
    • /
    • 2018
  • The synchronous reluctance motor (SynRM) servo-drive system has highly nonlinear uncertainties owing to a convex construction effect. It is difficult for the linear control method to achieve good performance for the SynRM drive system. The nonlinear backstepping control system using upper bound with switching function is proposed to inhibit uncertainty action for controlling the SynRM drive system. However, this method uses a large upper bound with a switching function, which results in a large chattering. In order to reduce this chattering, a nonlinear backstepping control system using an adaptive law is proposed to estimate the lumped uncertainty. Since this method uses an adaptive law, it cannot achiever satisfactory performance. Therefore, a nonlinear backstepping control system using a reformed recurrent Hermite polynomial neural network with an adaptive law and an error estimated law is proposed to estimate the lumped uncertainty and to compensate the estimated error in order to enhance the robustness of the SynRM drive system. Further, the reformed recurrent Hermite polynomial neural network with two learning rates is derived according to an increment type Lyapunov function to speed-up the parameter convergence. Finally, some experimental results and a comparative analysis are presented to verify that the proposed control system has better control performance for controlling SynRM drive systems.

Dynamic Parameter Analysis of Bolted Joint (볼트 결합부의 동적 파라미터 해석)

  • 백성남;지태한;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.244-249
    • /
    • 1994
  • The dynamic characteristics of mechanical structure are strongly affected by the properties of joint parameters. In this study, the test structures are constructed with two beam structures which are clamped by bolts, and a bolted joint which is modelled as a lumped stiffness element. To identify the dynamic joint parameters with variance of clamping torque of bolts, the sensitivity analysis and the mode energy analysis methods are investigated experimentally. As a result of these two methods, stiffnesses of bolted joint are experimentally found to increase as the clamping torque increases. These stiffnesses identified from the sensitivity analysis and the mode energy analysis method have some difference.

  • PDF

Thermal Analysis of a High Speed Induction Motor Considering Harmonic Loss Distribution

  • Duong, Minh-Trung;Chun, Yon-Do;Park, Byoung-Gun;Kim, Dong-Jun;Choi, Jae-Hak;Han, Pil-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1503-1510
    • /
    • 2017
  • In this paper, a thermal analysis of a high speed induction motor with a PWM voltage source was performed by considering harmonic loss components. The electromagnetic analysis of the high speed induction motor was conducted using the time-varying finite element method, and its thermal characteristics were carried out using the lump-circuit method. Harmonic losses from tests in the high frequency region were divided into core loss and conductor loss components using various ratios, in order to determine the loss distributions for the thermal analysis. The results from both the calculations and experiment were validated using a high speed induction motor prototype operating at 20,000rpm.

Development and Application of the Catchment Hydrologic Cycle Assessment Tool Considering Urbanization (I) - Model Development - (도시화에 따른 물순환 영향 평가 모형의 개발 및 적용(I) - 모형 개발 -)

  • Kim, Hyeon-Jun;Jang, Cheol-Hee;Noh, Seong-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.203-215
    • /
    • 2012
  • The objective of this study is to develop a catchment hydrologic cycle assessment model which can assess the impact of urban development and designing water cycle improvement facilities. Developed model might contribute to minimize the damage caused by urban development and to establish sustainableurban environments. The existing conceptual lumped models have a potential limitation in their capacity to simulate the hydrologic impacts of land use changes and assess diverse urban design. The distributed physics-based models under active study are data demanding; and much time is required to gather and check input data; and the cost of setting up a simulation and computational demand are required. The Catchment Hydrologic Cycle Assessment Tool (hereinafter the CAT) is a water cycle analysis model based on physical parameters and it has a link-node model structure. The CAT model can assess the characteristics of the short/long-term changes in water cycles before and after urbanization in the catchment. It supports the effective design of water cycle improvement facilities by supplementing the strengths and weaknesses of existing conceptual parameter-based lumped hydrologic models and physical parameter-based distributed hydrologic models. the model was applied to Seolma-cheon catchment, also calibrated and validated using 6 years (2002~2007) hourly streamflow data in Jeonjeokbigyo station, and the Nash-Sutcliffe model efficiencies were 0.75 (2002~2004) and 0.89 (2005~2007).

Parameter Sensitivity Analysis of VfloTM Model In Jungnang basin (중랑천 유역에서의 VfloTM 모형의 매개변수 민감도 분석)

  • Kim, Byung Sik;Kim, Bo Kyung;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.503-512
    • /
    • 2009
  • Watershed models, which are a tool for water cycle mechanism, are classified as the distributed model and the lumped model. Currently, the distributed models have been more widely used than lumped model for many researches and applications. The lumped model estimates the parameters in the conceptual and empirical sense, on the other hand, in the case of distributed model the first-guess value is estimated from the grid-based watershed characteristics and rainfall data. Therefore, the distributed model needs more detailed parameter adjustment in its calibration and also one should precisely understand the model parameters' characteristics and sensitivity. This study uses Jungnang basin as a study area and $Vflo^{TM}$ model, which is a physics-based distributed hydrologic model, is used to analyze its parameters' sensitivity. To begin with, 100 years frequency-design rainfall is derived from Huff's method for rainfall duration of 6 hours, then the discharge is simulated using the calibrated parameters of $Vflo^{TM}$ model. As a result, hydraulic conductivity and overland's roughness have an effect on runoff depth and peak discharge, respectively, while channel's roughness have influence on travel time and peak discharge.