• 제목/요약/키워드: Lumbar Spine Load

검색결과 35건 처리시간 0.027초

The Changes in Range of Motion after a Lumbar Spinal Arthroplasty with Charite$^{TM}$ in the Human Cadaveric Spine under Physiologic Compressive Follower Preload: A Comparative Study between Load Control Protocol and Hybrid Protocol

  • Kim, Se-Hoon;Chang, Ung-Kyu;Chang, Jae-Chil;Chun, Kwon-Soo;Lim, T. Jesse;Kim, Daniel H.
    • Journal of Korean Neurosurgical Society
    • /
    • 제46권2호
    • /
    • pp.144-151
    • /
    • 2009
  • Objective: To compare two testing protocols for evaluating range of motion (ROM) changes in the preloaded cadaveric spines implanted with a mobile core type Charite$^{TM}$ lumbar artificial disc. Methods: Using five human cadaveric lumbosacral spines (L2-S2), baseline ROMs were measured with a bending moment of 8 Nm for all motion modes (flexion/extension, lateral bending, and axial rotation) in intact spine. The ROM was tracked using a video-based motion-capturing system. After the Charite$^{TM}$ disc was implanted at the L4-L5 level, the measurement was repeated using two different methods: 1) loading up to 8 Nm with the compressive follower preload as in testing the intact spine (Load control protocol), 2) loading in displacement control until the total ROM of L2-S2 matches that when the intact spine was loaded under load control (Hybrid protocol). The comparison between the data of each protocol was performed. Results: The ROMs of the L4-L5 arthroplasty level were increased in all test modalities (p < 0.05 in bending and rotation) under both load and hybrid protocols. At the adjacent segments, the ROMs were increased in all modes except flexion under load control protocol. Under hybrid protocol, the adjacent segments demonstrated decreased ROMs in all modalities except extension at the inferior segment. Statistical significance between load and hybrid protocols was observed during bending and rotation at the operative and adjacent levels (p< 0.05). Conclusion: In hybrid protocol, the Charite$^{TM}$ disc provided a relatively better restoration of ROM, than in the load control protocol, reproducing clinical observations in terms of motion following surgery.

추간판 치환술이 요추분절에 미치는 생체역학적 영향 : 유한요소해석 (Biomechanical Effect of Total Disc Replacement on Lumbar Spinal Segment : A Finite Element Analysis)

  • 박원만;김기택;홍규표;김윤혁;오택열
    • 한국CDE학회논문집
    • /
    • 제13권1호
    • /
    • pp.58-66
    • /
    • 2008
  • The artificial discs have recently used to preserve the motion of the treated segment in lumbar spine surgery. However, there have been lack of biomechanical information of the artificial discs to explain current clinical controversies such as long-term results of implant wear and excessive facet contact forces. In this study, we investigated the biomechanical effects of three artificial implants on the lumbar spinal segments by finite element analysis. The finite element model of intact lumbar spine(L1-S) was developed and the three implants were inserted in L4-L5 segment of the spine model. 5 Nm of flexion and extension moments were applied on the superior plate of L1 with 400 N of compressive load. Excessive motions and high facet contact forces at the surgical level were generated in the all three implanted models. In the flexion, the peak von-Mises stresses in the semi-constrained type implant was higher than those in the un-constrained type implant which would cause wear on the polyethylene core. The results of the study would provide a biomechanical guideline for selecting optimal surgical approach or evaluating the current design of the implants, or developing a new implant.

척추성형술 시술 후 요추의 동적 특성 (Dynamic Characteristics of Lumbar Spine After Vertebroplasty)

  • 김상협;고성광;채수원;박정율
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.240-243
    • /
    • 2005
  • Osteoporosis, one of the age-related disease causes vertebra body fracture due to weakening trabecular bone and makes a substantial effect on load sharing among vertebras. Recently, vertebroplasty is one of the most popular treatment, as augmenting PMMA into vertebra. Biomechanical studies about vertebroplasty have been evaluated by several experiments or analysis under static loading but there has been no study on response under dynamic loading. This study included the FE analysis of patients who treated vertebroplasty under dynamic loading. For this study, 3-D FE model of lumbar spine(L1-L2) was modeled from CT scanning data and compared with experimental results in vitro in order to validate this model. Biomechanical behavior about each of normal person, osteoporotic patient and patient treated vertebroplasty for quantitative evaluations of vertebroplasty was compared and investigated.

  • PDF

Biomechanical Changes of the Lumbar Segment after Total Disc Replacement : Charite$^{(R)}$, Prodisc$^{(R)}$ and Maverick$^{(R)}$ Using Finite Element Model Study

  • Kim, Ki-Tack;Lee, Sang-Hun;Suk, Kyung-Soo;Lee, Jung-Hee;Jeong, Bi-O
    • Journal of Korean Neurosurgical Society
    • /
    • 제47권6호
    • /
    • pp.446-453
    • /
    • 2010
  • Objective : The purpose of this study was to analyze the biomechanical effects of three different constrained types of an artificial disc on the implanted and adjacent segments in the lumbar spine using a finite element model (FEM). Methods : The created intact model was validated by comparing the flexion-extension response without pre-load with the corresponding results obtained from the published experimental studies. The validated intact lumbar model was tested after implantation of three artificial discs at L4-5. Each implanted model was subjected to a combination of 400 N follower load and 5 Nm of flexion/extension moments. ABAQUS$^{TM}$ version 6.5 (ABAQUS Inc., Providence, RI, USA) and FEMAP version 8.20 (Electronic Data Systems Corp., Plano, TX, USA) were used for meshing and analysis of geometry of the intact and implanted models. Results : Under the flexion load, the intersegmental rotation angles of all the implanted models were similar to that of the intact model, but under the extension load, the values were greater than that of the intact model. The facet contact loads of three implanted models were greater than the loads observed with the intact model. Conclusion : Under the flexion load, three types of the implanted model at the L4-5 level showed the intersegmental rotation angle similar to the one measured with the intact model. Under the extension load, all of the artificial disc implanted models demonstrated an increased extension rotational angle at the operated level (L4-5), resulting in an increase under the facet contact load when compared with the adjacent segments. The increased facet load may lead to facet degeneration.

Long Term Efficacy of Posterior Lumbar Interbody Fusion with Standard Cages alone in Lumbar Disc Diseases Combined with Modic Changes

  • Kwon, Young-Min;Chin, Dong-Kyu;Jin, Byung-Ho;Kim, Keun-Su;Cho, Yong-Eun;Kuh, Sung-Uk
    • Journal of Korean Neurosurgical Society
    • /
    • 제46권4호
    • /
    • pp.322-327
    • /
    • 2009
  • Objective : Posterior lumbar interbody fusion (PLIF) is considered to have the best theoretical potential in promoting bony fusion of unstable vertebral segments by way of a load sharing effect of the anterior column. This study was undertaken to investigate the efficacy of PLIF with cages in chronic degenerative disc disease with Modic degeneration (changes of vertebral end plate). Methods : A total of 597 patients underwent a PLIF with threaded fusion cages (TFC) from 1993 to 2000. Three-hundred-fifty-one patients, who could be followed for more than 3 years, were enrolled in this study. Patients were grouped into 4 categories according to Modic classification (no degeneration : 259, type 1 : 26, type 2 : 55, type 3 : 11). Clinical and radiographic data were evaluated retrospectively. Results : The clinical success rate according to the Prolo's functional and economic outcome scale was 86% in patients without degeneration and 83% in patients with Modic degeneration. The clinical outcomes in each group were 88% in type 1, 84% in type 2, and 73% in type 3. The bony fusion rate was 97% in patients without degeneration and 83% in patients with Modic degeneration. The bony fusion rate in each group was 81% in type 1, 84% in type 2, and 55% in type 3. The clinical success and fusion rates were significantly lower in patients with type 3 degeneration. Conclusion : The PLIF with TFC has been found to be an effective procedure for lumbar spine fusion. But, the clinical outcome and bony fusion rates were significantly low in the patients with Modic type 3. The authors suggest that PLIF combined with pedicle screw fixation would be the better for them.

반복적인 들어올리기 작업시 작업자의 생체정보, 인체활동량 및 허리부하 분석 (Analysis of Physiological Bio-information, Human Physical Activities and Load of Lumbar Spine during the Repeated Lifting Work)

  • 손현목;선우훈;임기택;김장호;정종훈
    • Journal of Biosystems Engineering
    • /
    • 제35권5호
    • /
    • pp.357-365
    • /
    • 2010
  • Workers in the agricultural industry have been exposed to many work-related musculoskeletal disorders. So, our objectives in this study were to measure and analyze worker's physiological bio-information to reduce musculoskeletal disorders in relation to agricultural works. We investigated worker's bio-information of physiological signals during the repeated lifting work such as body temperature, heart rate, blood pressure, physical activity, and heart rate variability. Moreover, we analyzed the workloads of lumbar spine during the repeated lifting work using the 3-axis acceleration and angular velocity sensors. The changes of body temperature was not significant, but the mean heart rate increased from 90/min to 116/min significantly during 30 min of repeated lifting work (p<0.05). The average worker's physical activity(energy consumption rate) was 206 kcal/70kg/h during the repeated lifting work. The workers' acute stress index was more than 80, which indicated a stressful work. Also, the maximum shear force on the disk (L5/S1) of a worker's lumbar spine in static state was 500N, and the maximum inertia moment was 139 $N{\cdot}m$ in dynamic state.

Effects of Three Different Hip Positions in Frontal Plane on Activity of Abdominal Muscles During Active Straight-Leg Raise

  • Yoon, Tae-Lim;Kim, Ki-Song
    • 한국전문물리치료학회지
    • /
    • 제20권3호
    • /
    • pp.81-88
    • /
    • 2013
  • Active straight-leg raise (ASLR) is a physical evaluation procedure to test lumbar spine stability. Several previous studies have reported various methods to control the activation of abdominal muscles during ASLR. We investigated the effects of three different hip positions in frontal plane on abdominal muscles to increase or decrease the difficulty level of lumbar spine stability exercise during ASLR in pain free subjects. Eleven young and healthy subjects voluntarily participated in this study (6 men, 5 women; mean age=$24.0{\pm}1.2$ years, height=$160.0{\pm}7.3cm$, weight=$55.0{\pm}10.6kg$, body mass index=$21.5{\pm}2.3kg/m^2$). The subjects had three trials on each ASLR with hip $10^{\circ}$ adduction, neutral hip, and hip $30^{\circ}$ abduction. Separate repeated-measures analysis of variance (ANOVA) and the post hoc Bonferroni tests (with ${\alpha}$=.05/3=.017) were performed for each muscle among the three different hip positions in frontal plane (ASLR with hip $10^{\circ}$ adduction, neutral hip, and hip $30^{\circ}$ abduction). The ipsilateral external oblique (EO), contralateral EO, ipsilateral internal oblique/transverse abdominis (IO/TrA), and contralateral IO/TrA were significantly greater in ASLR with hip $30^{\circ}$ abduction compared with ASLR with hip $10^{\circ}$ adduction. Also, the ipsilateral EO, contralateral EO, and ipsilateral IO/TrA were significantly greater in ASLR with hip $30^{\circ}$ abduction compared with ASLR with neutral hip. These results suggest that ASLR with hip $30^{\circ}$ abduction and neutral would be useful method to strengthen the EO and IO/TrA. And, ASLR with hip $10^{\circ}$ adduction would be effective in early stages of lumbar stabilization program due to low activation of EO and IO/TrA during maintaining of ASLR position with low load.

편평족에 대한 관절가동술과 자가신장이 요부의 신장성, 요통과 하지 체중부하 차이에 대한 비교 연구 (The Comparison Study of Ankle Joint Mobilization and Elongation on the Difference of Weight-bearing Load, Low Back Pain and Flexibility in Flat-foots Subjects)

  • 박성두;유달영
    • 대한정형도수물리치료학회지
    • /
    • 제23권2호
    • /
    • pp.9-16
    • /
    • 2017
  • Background: The purpose of this study was to investigate the relationship between the spine and the flat-foot, the stability and the alignment of the posture of the neck to prevent the alignment of the ankle joint operation and the lower back flexibility of the lumbar region according to the type of treatment using active stretching of the triceps, back pain, and to see how they affect weight bearing differences. Methods: The subjects of this study were 24 chronic low back pain patients. They were randomly divided into experimental group and control group. In the experimental group, ankle joint mobilization and active scraping of triceps were performed three times a week for a total of 6 weeks. The control group was performed in the same way without articulation. The range of flexion and extension motion of the lumbar spine and pain degree and difference of weight-bearing were measured before and after the experiment. Results: The model of ankle joint mobilization and calf muscle elongation of flat foot significantly improved the range of flexion and extension motion of the vertebrae (p<.05) and the VAS and distribution of weight-bearing were decreased in both of two groups (p<.05). In other words, the exercise and mobilization help to recover of the balance of the whole musculoskeletal, the vertebrae. Conclusions: The active exercise of the triceps muscle of the lower leg in this study It affects the flexibility of the lumbar spine, the pain and the difference in the weight support of the lower extremities, when we performed ankle joint mobilization for exercise and cramping, pain and the difference in weight support between the two lower limbs.

  • PDF

Restoration of Sagittal Balance in Spinal Deformity Surgery

  • Makhni, Melvin C.;Shillingford, Jamal N.;Laratta, Joseph L.;Hyun, Seung-Jae;Kim, Yongjung J.
    • Journal of Korean Neurosurgical Society
    • /
    • 제61권2호
    • /
    • pp.167-179
    • /
    • 2018
  • The prevalence of patients with adult spinal deformity (ASD) has been reported as high as 68%. ASD often leads to significant pain and disability. Recent emphasis has been placed on sagittal plane balance and restoring normal sagittal alignment with regards to the three dimensional deformity of ASD. Optimal sagittal alignment has been known to increase spinal biomechanical efficiency, reduce energy expenditure by maintaining a stable posture with improved load absorption, influence better bony union, and help to decelerate adjacent segment deterioration. Increasingly positive sagittal imbalance has been shown to correlate with poor functional outcome and poor self-image along with poor psychological function. Compensatory mechanisms attempt to maintain sagittal balance through pelvic rotation, alterations in lumbar lordosis as well as knee and ankle flexion at the cost of increased energy expenditure. Restoring normal spinopelvic alignment is paramount to the treatment of complex spinal deformity with sagittal imbalance. Posterior osteotomies including posterior column osteotomies, pedicle subtraction osteotomies, and posterior vertebral column resection, as well anterior column support are well known to improve sagittal alignment. Understanding of whole spinal alignment and dynamics of spinopelvic alignment is essential to restore sagittal balance while minimizing the risk of developing sagittal decompensation after surgical intervention.

The Effects of Ramp Gradients and Pushing-Pulling Techniques on Lumbar Spinal Load in Healthy Workers

  • Pinupong, Chalearmpong;Jalayondeja, Wattana;Mekhora, Keerin;Bhuanantanondh, Petcharatana;Jalayondeja, Chutima
    • Safety and Health at Work
    • /
    • 제11권3호
    • /
    • pp.307-313
    • /
    • 2020
  • Background: Many tasks in industrial and health care setting are involved with pushing and pulling tasks up or down on a ramp. An efficient method of moving cart which reduces the risk of low back pain should be concerned. This study aimed to investigate the effects of handling types (HTs) and slope on lumbar spinal load during moving a cart on a ramp. We conducted a 2 × 2 × 4 factorial design with three main factors: 2 HTs, 2 handling directions of moving a cart and 4 degrees of ramp slope. Methods: Thirty healthy male workers performed 14 tasks consist of moving a cart up and down on the ramp of 0°, 10°, 15°, and 20° degrees with pushing and pulling methods. Joint angles from a 3D motion capture system combined with subject height, body weight, and hand forces were used to calculate the spinal load by the 3DSSPP program. Results: Our results showed significant effect of HT, handling directions and slope on compression and shear force of the lumbar spine (p < 0.001). When the ramp gradient increased, the L4/5 compression forces increased in both pushing and pulling (p < 0.001) Shear forces increased in pulling and decreased in pushing in all tasks. At high slopes, pulling generated more compression and shear forces than that of pushing (p < 0.01). Conclusion: Using the appropriate technique of moving a cart on the ramp can reduce the risk of high spinal load, and the pushing is therefore recommended for moving a cart up/down on ramp gradients.