DOI QR코드

DOI QR Code

The Changes in Range of Motion after a Lumbar Spinal Arthroplasty with Charite$^{TM}$ in the Human Cadaveric Spine under Physiologic Compressive Follower Preload: A Comparative Study between Load Control Protocol and Hybrid Protocol

  • Kim, Se-Hoon (Department of Neurosurgery, Korea University Medical Center) ;
  • Chang, Ung-Kyu (Department of Neurosurgery, Stanford University Medical Center) ;
  • Chang, Jae-Chil (Department of Neurosurgery, Stanford University Medical Center) ;
  • Chun, Kwon-Soo (Department of Neurosurgery, Baylor College of Medicine) ;
  • Lim, T. Jesse (Department of Neurosurgery, Stanford University Medical Center) ;
  • Kim, Daniel H. (Department of Neurosurgery, Baylor College of Medicine)
  • 발행 : 2009.08.28

초록

Objective: To compare two testing protocols for evaluating range of motion (ROM) changes in the preloaded cadaveric spines implanted with a mobile core type Charite$^{TM}$ lumbar artificial disc. Methods: Using five human cadaveric lumbosacral spines (L2-S2), baseline ROMs were measured with a bending moment of 8 Nm for all motion modes (flexion/extension, lateral bending, and axial rotation) in intact spine. The ROM was tracked using a video-based motion-capturing system. After the Charite$^{TM}$ disc was implanted at the L4-L5 level, the measurement was repeated using two different methods: 1) loading up to 8 Nm with the compressive follower preload as in testing the intact spine (Load control protocol), 2) loading in displacement control until the total ROM of L2-S2 matches that when the intact spine was loaded under load control (Hybrid protocol). The comparison between the data of each protocol was performed. Results: The ROMs of the L4-L5 arthroplasty level were increased in all test modalities (p < 0.05 in bending and rotation) under both load and hybrid protocols. At the adjacent segments, the ROMs were increased in all modes except flexion under load control protocol. Under hybrid protocol, the adjacent segments demonstrated decreased ROMs in all modalities except extension at the inferior segment. Statistical significance between load and hybrid protocols was observed during bending and rotation at the operative and adjacent levels (p< 0.05). Conclusion: In hybrid protocol, the Charite$^{TM}$ disc provided a relatively better restoration of ROM, than in the load control protocol, reproducing clinical observations in terms of motion following surgery.

키워드

참고문헌

  1. Bertagnoli R, Kumar S : Indications for full prosthetic disc arthroplasty :a correlation of clinical outcome against a variety of indications. EurSpine J 11 Suppl 2 : S131-S136, 2002
  2. Büttner-Janz K, Schellnack K, Zippel H : Biomechanics of the SBCharité lumbar intervertebral disc endoprosthesis. Int Orthop 13 :173-176, 1989 https://doi.org/10.1007/BF00268042
  3. Cinotti G, David T, Postacchini F : Results of disc prosthesis after aminimum follow-up period of 2 years. Spine (Phila Pa 1976) 21 :995-1000, 1996 https://doi.org/10.1097/00007632-199604150-00015
  4. Crisco JJ, Panjabi MM, Yamamoto I, Oxland TR : Euler stability ofthe human ligamentous lumbar spine. Part II : Experiment. ClinBiomech 7 : 27-32, 1992 https://doi.org/10.1016/0268-0033(92)90004-N
  5. Cunningham BW, Gordon JD, Dmitriev AE, Hu N, McAfee PC :Biomechanical evaluation of total disc replacement arthroplasty : anin vitro human cadaveric model. Spine (Phila Pa 1976) 28 : S110-S117, 2003 https://doi.org/10.1097/01.BRS.0000092209.27573.90
  6. Dekutoski MB, Schendel MJ, Ogilvie JW, Olsewski JM, Wallace LJ,Lewis JL : Comparison of in vivo and in vitro adjacent segmentmotion after lumbar fusion. Spine 19 (Phila Pa 1976) : 1745-1751, 1994 https://doi.org/10.1097/00007632-199408000-00015
  7. Dickman CA, Yahiro MA, Lu HT, Melkerson MN : Surgicaltreatment alternatives for fixation of unstable fractures of the thoracicand lumbar spine. A meta-analysis. Spine (Phila Pa 1976) 19 (20Suppl) : S2266-S2273, 1994 https://doi.org/10.1097/00007632-199410151-00003
  8. Enker P, Steffee A, McMillin C, Keppler L, Biscup R, Miller S :Artificial disc replacement. Preliminary report with a 3-year minimumfollow-up. Spine (Phila Pa 1976) 18 : 1061-1070, 1993 https://doi.org/10.1097/00007632-199306150-00017
  9. Etebar S, Cahill DW : Risk factors for adjacent-segment failurefollowing lumbar fixation with rigid instrumentation for degenerativeinstability. J Neurosurg 90 : 163-169, 1999
  10. Fernstr\ddot{o}m U : Arthroplasty with intercorporal endoprosthesis inherniated disc and in painful disc. Acta Chir Scand Suppl 357 : 154-159, 1966
  11. Geisler FH, Blumenthal SL, Guyer RD, McAfee PC, Regan JJ, Johnson JP, et al. : Neurological complications of lumbar artificial disc replacement and comparison of clinical results with those related to lumbar arthrodesis in the literature : results of a multicenter, prospective, randomized investigational device exemption study of Charitéintervertebral disc. Invited submission from the Joint Section Meetingon Disorders of the Spine and Peripheral Nerves, March 2004. JNeurosurg Spine 1 : 143-154, 2004畬慴楯渀䍬楮⁃慮捥爠剥猀䍬楮楣慬⁂楯捨敭楳瑲礀䍬楮楣慬⁓捩敮捥⁡湤⁍潬散畬慲⁍䍯汬潩摳⁡湤⁓畲晡捥猠䈺⁂楯楮瑥䍯浰⸠䉩潣桥洮⁐桹獩潬⸀䍯浰畴敲猠☠却牵捴畲敳䍲楴⁒敶⁏牡氠䉩潬⁍敤䍵牲⸠卣椮䑥捩獩潮⁓捩敮捥猀䑩慢整敳䑩獥慳敳映瑨攠䍯汯渠☠剥捴畭䕡牬礠䍨楬摨潯搠剥獥慲捨⁑畡牴敲䕬散瑲潰桯牥獩猀䕮杩湥敲楮朠䙲慣瑵牥⁍散桡湩捳䕮癩牯湭敮瑡氠剥獥慲捨䕵爠䨠䍡湣敲䕵爮⁐桹献⁊⸠䔮䕵牯灥慮⁊潵牮慬映佰敲慴楯湡氠䕵牯灥慮⁕牯汯杹䙅䉓⁌整瑥牳䙩獨⸠䉵汬⸀䙯潤⁓捩敮捥⁡湤⁂楯瑥捨湯汯杹䙲敥⁒慤楣慬⁂楯汯杹⁡湤⁍敤楣楮䝡獴牯敮琦⌲㌳㭲潬潧楥⁣汩湩煵攠䝥湥䝥潴散桮楱略䝹湥捯汯杩挠佮捯汯杹䡥慲楮朠剥獥慲捨䡯牴卣楥湣攀䡹摲潬潧楣慬⁐牯捥獳敳䥅䕅⁊潵牮慬映兵慮瑵洠䕬散瑲潮䥅䕅⁔牡돀䢱? https://doi.org/10.3171/spi.2004.1.2.0143
  12. German JW, Foley KT : Disc arthroplasty in the management of thepainful lumbar motion segment. Spine (Phila Pa 1976) 30 : S60-S67,2005
  13. Gertzbein SD, Seligman J, Holtby R, Chan KW, Ogston N,Kapasouri A, et al. : Centrode characteristics of the lumbar spine as afunction of segmental instability. Clin Orthop Relat Res : 48-51,1986
  14. Ghiselli G, Wang JC, Bhatia NN, Hsu WK, Dawson EG : Adjacentsegment degeneration in the lumbar spine. J Bone Joint Surg Am86A : 1497-1503, 2004
  15. Ghiselli G, Wang JC, Hsu WK, Dawson EG : L5-S1 segmentsurvivorship and clinical outcome analysis after L4-L5 isolated fusion.Spine 28 : 1275-1280; discussion 1280, 2003 https://doi.org/10.1097/00007632-200306150-00011
  16. Goel VK, Grauer JN, Patel TC, Biyani A, Sairyo K, Vishnubhotla S,et al. : Effects of charit$\acute{e}$ artificial disc on the implanted and adjacentspinal segments mechanics using a hybrid testing protocol. Spine(Phila Pa 1976) 30 : 2755-2764, 2005 https://doi.org/10.1097/01.brs.0000195897.17277.67
  17. Goel VK, Weinstein JN, Patwardhan AG : Biomechanics of intactligamentous spine, in Goel VK WJe (ed) : Biomechanics of theSpine : Clinical and Surgical Perspectives. FL : CRC Press, 1990, pp97-156
  18. Griffith SL, Shelokov AP, B$\ddot{u}$ttner-Janz K, LeMaire JP, Zeegers WS :A multicenter retrospective study of the clinical results of the LINKSB Charité intervertebral prosthesis. The initial European experience.Spine (Phila Pa 1976) 19 : 1842-1849, 1994 https://doi.org/10.1097/00007632-199408150-00009
  19. Guyer RD, Ohnmeiss DD : Intervertebral disc prostheses. Spine(Phila Pa 1976) 28 : S15-S23, 2003
  20. Ha SK, Kim SH, Kim DH, Park JY, Lim DJ, Lee SK : Biomechanicalstudy of lumbar spinal arthroplasty with a semi-constrainedartificial disc (activ L) in the human cadaveric spine. J KoreanNeurosurg Soc 45 : 169-175, 2009 https://doi.org/10.3340/jkns.2009.45.3.169
  21. Hambly MF, Wiltse LL, Raghavan N, Schneiderman G, Koenig C :The transition zone above a lumbosacral fusion. Spine (Phila Pa1976) 23 : 1785-1792, 1998 https://doi.org/10.1097/00007632-199808150-00012
  22. Hedman TP, Kostuik JP, Fernie GR, Hellier WG : Design of anintervertebral disc prosthesis. Spine (Phila Pa 1976) 16 : S256-S260,1991 https://doi.org/10.1097/00007632-199106001-00016
  23. Hilibrand AS, Carlson GD, Palumbo MA, Jones PK, Bohlman HH :Radiculopathy and myelopathy at segments adjacent to the site of aprevious anterior cervical arthrodesis. J Bone Joint Surg Am 81 :519-528, 1999 https://doi.org/10.2106/00004623-199904000-00009
  24. Hitchon PW, Eichholz K, Barry C, Rubenbauer P, Ingalhalikar A,Nakamura S, et al. : Biomechanical studies of an artificial disc implantin the human cadaveric spine. J Neurosurg Spine 2 : 339-343, 2005 https://doi.org/10.3171/spi.2005.2.3.0339
  25. Klara PM, Ray CD : Artificial nucleus replacement : clinicalexperience. Spine 27 (Phila Pa 1976) : 1374-1377, 2002 https://doi.org/10.1097/00007632-200206150-00022
  26. Kostuik JP : The Kostuik artificial disc in Weinstein JN (ed) :Clinical Efficacy and Outcome in the Diagnosis and Treatment ofLow Back Pain. New York : Raven Press, 1992, pp 259-270
  27. Lee CK : Accelerated degeneration of the segment adjacent to alumbar fusion. Spine (Phila Pa 1976) 13 : 375-377, 1988 https://doi.org/10.1097/00007632-198803000-00029
  28. Lemaire JP, Skalli W, Lavaste F, Templier A, Mendes F, Diop A, etal. : Intervertebral disc prosthesis. Results and prospects for the year2000. Clin Orthop Relat Res : 64-76, 1997 https://doi.org/10.1097/00003086-199704000-00009
  29. Mayer HM, Wiechert K, Korge A, Qose I : Minimally invasive totaldisc replacement : surgical technique and preliminary clinical results.Eur Spine J 11 Suppl 2 : S124-S130, 2002
  30. McAfee PC : Artificial disc prosthesis in Kaech DL, Jinkins JR (eds) :Spinal Restabilization Procedures. Amsterdam : Elsevier Science BV,2002, pp 299 -310
  31. McAfee PC, Cunningham BW, Orbegoso CM, Sefter JC, DmitrievAE, Fedder IL : Analysis of porous ingrowth in intervertebral discprostheses : a nonhuman primate model. Spine (Phila Pa 1976) 28 :332-340, 2003
  32. McAfee PC, Fedder IL, Saiedy S, Shucosky EM, Cunningham BW :Experimental design of total disk replacement-experience with aprospective randomized study of the SB Charit$\acute{e}$. Spine 28 : S153-S162, 2003 https://doi.org/10.1097/01.BRS.0000092217.34981.E1
  33. Patwardhan AG, Havey RM, Meade KP, Lee B, Dunlap B : Afollower load increases the load-carrying capacity of the lumbar spinein compression. Spine (Phila Pa 1976) 24 : 1003-1009, 1999 https://doi.org/10.1097/00007632-199905150-00014
  34. Ray CD : The Raymedica prosthesis disc nucleus : an update inKeach DL, Jinkins JR (eds) : Spinal Restabilization Procedures.Amsterdam : ElsevierScience BV, 2002, pp 273-282
  35. Ray CD : Threaded titanium cages for lumbar interbody fusions.Spine (Phila Pa 1976) 22 : 667-679; discussion 679-680, 1997 https://doi.org/10.1097/00007632-199703150-00019
  36. Schlegel JD, Smith JA, Schleusener RL : Lumbar motion segmentpathology adjacent to thoracolumbar, lumbar, and lumbosacralfusions. Spine (Phila Pa 1976) 21 : 970-981, 1996 https://doi.org/10.1097/00007632-199604150-00013
  37. Shono Y, Kaneda K, Abumi K, McAfee PC, Cunningham BW :Stability of posterior spinal instrumentation and its effects on adjacentmotion segments in the lumbosacral spine. Spine (Phila Pa 1976) 23 :1550-1558, 1998 https://doi.org/10.1097/00007632-199807150-00009
  38. Steffee AD : The Steffee artificial disc in Weinstein JNe (ed) : ClinicalEfficacy and Outcome in the Diagnosis and Treatment of LowBack Pain. New York : Raven Press, 1992, pp 245-258
  39. Tropiano P, Huang RC, Girardi FP, Marnay T : Lumbar discreplacement : preliminary results with ProDisc II after a minimumfollow-up period of 1 year. J Spinal Disord Tech 16 : 362-368, 2003
  40. Weinhoffer SL, Guyer RD, Herbert M, Griffith SL : Intradiscalpressure measurements above an instrumented fusion. A cadavericstudy. Spine (Phila Pa 1976) 20 : 526-531, 1995 https://doi.org/10.1097/00007632-199503010-00004
  41. Whitecloud TS 3rd, Davis JM, Olive PM : Operative treatment of the degenerated segment adjacent to a lumbar fusion. Spine (Phila Pa 1976) 19 : 531-536, 1994 https://doi.org/10.1097/00007632-199403000-00007
  42. Zeegers WS, Bohnen LM, Laaper M, Verhaegen MJ : Artificial discreplacement with the modular type SB Charité III : 2-year results in50 prospectively studied patients. Eur Spine J 8 : 210-217, 1999 https://doi.org/10.1007/s005860050160

피인용 문헌

  1. Hybrid dynamic stabilization: a biomechanical assessment of adjacent and supraadjacent levels of the lumbar spine : Laboratory investigation vol.17, pp.3, 2009, https://doi.org/10.3171/2012.6.spine111054
  2. The Current Testing Protocols for Biomechanical Evaluation of Lumbar Spinal Implants in Laboratory Setting: A Review of the Literature vol.2015, pp.None, 2009, https://doi.org/10.1155/2015/506181
  3. Relevance of using a compressive preload in the cervical spine: an experimental and numerical simulating investigation vol.25, pp.suppl1, 2009, https://doi.org/10.1007/s00590-015-1625-2
  4. A PARAMETRIC INVESTIGATION OF THE EFFECTS OF CERVICAL DISC PROSTHESES WITH UPWARD AND DOWNWARD NUCLEI ON SPINE BIOMECHANICS vol.16, pp.7, 2016, https://doi.org/10.1142/s0219519416500925
  5. A Computational Method for the Design of an Additively Manufactured Personalized Artificial Spinal Disc With Physiological Stiffness Under Multiple Loading Conditions vol.141, pp.10, 2019, https://doi.org/10.1115/1.4043931
  6. Relationship between the elastic modulus of the cage material and the biomechanical properties of transforaminal lumbar interbody fusion: A logarithmic regression analysis based on parametric finite e vol.214, pp.None, 2009, https://doi.org/10.1016/j.cmpb.2021.106570