• Title/Summary/Keyword: Low-viscosity composite resin

Search Result 35, Processing Time 0.025 seconds

Study on Properties of Carbon Sheet Molding Compound(C-SMC) according to Resin and Carbon Fiber Ratio (수지 및 탄소섬유 함유량에 따른 C-SMC 복합재료 물성 연구)

  • Seo, Dae-kyung;Yang, Suk-gon;Kim, Ki Young;Park, Min Gee;Park, Dae-gyu;Lee, Eun-ha;Kim, Yong-tae;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.32 no.4
    • /
    • pp.245-254
    • /
    • 2020
  • The sheet molding compound composite has been applied divers section. This paper reports processing of carbon fiber reinforced thermosetting composite with diverse resins and which was composed of chopped carbon fiber (30 ~ 60 wt%). Normally the paste that the viscosity is over 15,000 cps has been used in traditional Sheet molding compound (SMC) machine. In this research, SMC machine was designed to make Carbon-sheet molding compound (C-SMC) prepreg which was composed with low viscosity resin (1,800 ~ 2,500 cps increase up to 10,000 cps after aging). In order to confirm the optimal processing condition. Mechanical strength tests including tensile test, shear test, impact test, flexural strength test were conducted on C-SMC composites. Plus we identified the correlation between the mechanical properties and prepreg processing condition (carbon ratio and applied resin).

Manufacturing and Numerical Analysis of Glass Fiber Chopped Strand Mat Reinforced p-DCPD Composites Processed by S-RIM (S-RIM을 이용한 Glass Fiber Chopped Strand Mat 강화 p-DCPD 복합재료 제작 및 수치해석을 통한 공정 시간 예측)

  • YOO, HYEONGMIN;UM, MOONKWANG;CHOI, SUNGWOONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.629-634
    • /
    • 2019
  • Dicyclopentadiene is a low viscosity resin which forms a poly-dicyclopentadiene rapidly through ring opening metathesis polymerization (ROMP). This poly-dicyclopentadiene has outstanding properties of low-temperature, water and impact resistances. Due to these advantages, military and offshore structures try to apply the DCPD composites by using liquid composite molding process. In this study, 14%, 38% volume fraction fiber glass strand mat reinforced p-DCPD composites processed by structural reaction injection molding (S-RIM) which has resin-catalsyt mixing head and glass fiber preform in the mold. Additionally, S-RIM numerical analysis was conducted to predict the process time depending on fiber volume fraction and mold temperature. The process time is shorter when it has the lower fiber volume fraction or the higher mold temperature. At higher mold temperature, it is necessary to set the maximum mold temperature considering the resin curing time.

Measurement of Viscosity Behavior in In-situ Anionic Polymerization of ε-caprolactam for Thermoplastic Reactive Resin Transfer Molding (반응액상성형에서 ε-카프로락탐의 음이온 중합에 따른 점도 거동 평가)

  • Lee, Jae Hyo;Kang, Seung In;Kim, Sang Woo;Yi, Jin Woo;Seong, Dong Gi
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.39-43
    • /
    • 2020
  • Recently, fabrication process of thermoplastic polyamide-based composites with recyclability as well as impact, chemical, and abrasion resistance have been widely studied. In particular, thermoplastic reactive resin transfer molding (TRTM) in which monomer with low viscosity is injected and in-situ polymerized inside mold has received a great attention, because thermoplastic melts are hard to impregnate fiber preform due to their very high viscosity. However, it is difficult to optimize the processing conditions because of high reactivity and sensitivity to external environments of the used monomer, ε-caprolactam. In this study, viscosity as an important process parameter in TRTM was measured during in-situ anionic polymerization of ε-caprolactam and the solutions for problems caused by high polymerization rate and sensitivity to moisture and oxygen were suggested. Reliability of the improved measurement technique was verified by comparing the viscosity behavior at various environmental conditions including humidity and atmosphere, and it is expected to be helpful for optimization of TRTM process.

Styrene-free Synthesis of Flame-retardant Vinyl Ester Resin Films for Hot-melt Prepreg Process (핫멜트 프리프레그 공정용 난연성 비닐에스터 수지 필름의 무 스티렌 합성)

  • Jiseon, Kang;Minji, Kim;Mongyoung, Huh;Seok Il, Yun
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.412-418
    • /
    • 2022
  • Flame-retardant vinyl ester (VE) resin films were developed from the mixtures of brominated and non-brominated epoxy resins via esterification with methacrylic acid without reactive diluents. The films were used to fabricate carbon fiber (CF) prepregs via a hot melt impregnation process. The viscosity of VE resins suitable for film production was optimized by mixing low-viscosity bisphenol-A and high-viscosity brominated bisphenol-A epoxy precursors. Increasing the bromine content of the cured VE resin further increased the limited oxygen index (LOI) (39%), storage modulus (2.4 GPa) at 25℃ and residual carbonization (16.1%) values compared to non-brominated VE. Manual layup of as-prepared VE prepregs with subsequent curing led to the successful fabrication of CF-reinforced composites with high tensile and flexural strength. The results from the study hold high promise for a styrene-free, environmentally friendly VE composite process in the future.

A Study on the Preocessing of high Runctional Composites and the Evaluation of Its Characteristics (고기능성 복합재료의 제조와 그 특성평가에 관한 연구)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.139-145
    • /
    • 1998
  • Filament winding method is widely used for composite fabrications using low viscosity liquid for-mation and processing asymmetrical structures of pressure vessel pipe rocket motor case etc. The filament winding method is affected by several parameters such as pot life of process time viscosi-ty of resin filament winding temperature and schedules curing condition and post curing condi-tion of resin. To develope high functional composite materials the rotation(5, 15, 20, 30rpm) of the winding machine was controlled by D.C motor. And the wiper to give proper tension was equipped between strand and resin bath. The resin is hooked by the design wiper. The adequate cure schedule was found by DSC. NOL ring test is carried out to investigate the basic physical properties such as design technology. The void contents in filament winding is generally higher than that of the prepreg laminated plate. These high contents of void can make a crack in resin in spite of low deformation. These problem was solved by giving tension in processing. To improve the characteristics of fiber volume fraction void contents resin/fiber bonding the winding speedc is changed under constant tension. It was found that resin impregnation was not different from in fiber contents void contents at the range of 0.5~1kg tension but it was found that resin was not impregnated at the above of 1.5kg tension. In burst test a pure PE liner was failed at a nozzle part under the $14kg/\textrm{cm}^2$ pressure but a pressure vessel of CNG was failed at a cylinder part under the $200kg/\textrm{cm}^2$ pressure.

  • PDF

Experimental and Theoretical Study on Shear Flow Behavior of Polypropylene/Layered Silicate Nanocomposites

  • Lee, Seung-Hwan;Youn, Jae-Ryoun
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.191-214
    • /
    • 2008
  • Polypropylene/layered silicate nanocomposites containing maleic anhydride grafted polypropylene were prepared by melt compounding and their rheological behavior was investigated in shear flow. Transient and steady shear flows were simulated numerically by using the K-BKZ integral constitutive equation along with experimentally determined damping functions under dynamic oscillatory and step strain shear flows. Nonlinear shear responses were predicted with the K-BKZ constitutive equation using two different damping functions such as the Wagner and PSM models. It was observed that PP-g-MAH compatibilized PP/layered silicate nanocomposites have stronger and earlier shear thinning and higher steady shear viscosity than pure PP resin or uncompatibilized nanocomposites at low shear rate regions. Strong damping behavior of the PP/layered silicate nanocomposite was predicted under large step shear strain and considered as a result of the strain-induced orientation of the organoclay in the shear flow. Steady shear viscosity of the pure PP and uncompatibilized nanocomposite predicted by the K-BKZ model was in good agreement with the experimental results at all shear rate regions. However, the model was inadequate to predict the steady shear viscosity of PP-g-MAH compatibilized nanocomposites quantitatively because the K-BKZ model overestimates strain-softening damping behavior for PP/layered silicate nanocomposites.

INFLUENCE OF REBONDING PROCEDURES ON MICROLEAKAGE OF COMPOSITE RESIN RESTORATIONS (복합레진 수복 시 재접착 술식이 미세누출에 미치는 영향)

  • Lee, Mi-Ae;Seo, Duck-Kyu;Son, Ho-Hyun;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.3
    • /
    • pp.164-172
    • /
    • 2010
  • During a composite resin restoration, an anticipating contraction gap is usually tried to seal with low-viscosity resin after successive polishing, etching, rinsing and drying steps, which as a whole is called rebonding procedure. However, the gap might already have been filled with water or debris before applying the sealing resin. We hypothesized that microleakage would decrease if the rebonding agent was applied before the polishing step, i.e., immediately after curing composite resin. On the buccal and lingual surfaces of 35 extracted human molar teeth, class V cavities were prepared with the occlusal margin in enamel and the gingival margin in dentin. They were restored with a hybrid composite resin Z250 (3M ESPE, USA) using an adhesive AdperTM Single Bond 2 (3M ESPE). As rebonding agents, BisCover LV (Bisco, USA), ScotchBond Multi-Purpose adhesive (3M ESPE) and an experimental adhesive were applied on the restoration margins before polishing step or after successive polishing and etching steps. The infiltration depth of 2% methylene blue into the margin was measured using an optical stereomicroscope. The correlation between viscosity of rebonding agents and mciroleakage was also evaluated. There were no statistically significant differences in the microleakage within the rebonding procedures, within the rebonding agents, and within the margins. However, when the restorations were not rebonded, the microleakage at gingival margin was significantly higher than those groups rebonded with 3 agents (p < 0.05). The difference was not observed at the occlusal margin. No significant correlation was found between viscosity of rebonding agents and microleakage, except very weak correlation in case of rebonding after polishing and etching at gingival margin.

Design and Characterization of Low Viscosity Epoxy Based on Flame Retardant Phosphorus Epoxy (난연성 인계 에폭시를 기반으로 한 저점도 에폭시 설계 및 특성 분석)

  • Park, Jun-Seong;Woo, Je-Wan
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.449-455
    • /
    • 2021
  • Composite materials are substances that are configured to have excellent physical properties by combining the properties of a single substance, and are in the limelight as materials that exceed the performance of metals and polymers. However, it has the disadvantages of long cycle time and high unit price, and much research is being performed to overcome these disadvantages. In this study, we developed an epoxy resin curing agent that can shorten the time required for mass production of composite materials, and tried to expand the applicability of objections by imparting flame retardancy. The epoxy resin used as a basic substance utilized two types of bisphenol F and resorcinol structure, which was further modified using 9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide (DOPO) to impart flame retardancy. Triethylphosphate (TEP) and bis [(5-ethyl-2-methyl-1,3,2-dioxaphosphorinan-5-yl)methyl] methyl phosphonate P,P'-dioxide (FR-001) were used as additives, seven kinds of compositions were blended, thermal characteristics (gelation time, glass transition temperature) and flame retardant performance were evaluated. We successfully developed an epoxy matrix that can be applied to high pressure resin transfer molding (HP-RTM) process.

SURFACE ROUGHNESS OF EXPERIMENTAL COMPOSITE RESINS USING CONFOCAL LASER SCANNING MICROSCOPE (공초점 레이저 주사 현미경을 이용한 실험적 레진의 표면 조도에 대한 연구)

  • Bae, J.H.;Lee, M.A.;Cho, B.H.
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of a new resin monomer, filler size and polishing technique on the surface roughness of composite resin restorations using confocal laser scanning microscopy. By adding new methoxylated Bis-GMA (Bis-M-GMA, 2,2-bis[4-(2-methoxy-3-methacryloyloxy propoxy) phenyl] propane) having low viscosity, the content of TEGDMA might be decreased. Three experimental composite resins were made: EX1 (Bis-M-GMA/TEGDMA = 95/5 wt%, 40 nm nanofillers); EX2 (Bis-M-GMA/TEGDMA = 95/5 wt%, 20 nm nanofillers); EX3 (Bis-GMA/TEGDMA = 70/30 wt%, 40 nm nanofillers). Filtek Z250 was used as a reference. Nine specimens (6 mm in diameter and 2 mm in thickness) for each experimental composite resin and Filtek Z250 were fabricated in a teflon mold and assigned to three groups. In Mylar strip group, specimens were left undisturbed. In Sof-lex group, specimens were ground with #1000 SiC paper and polished with Sof-lex discs. In DiaPolisher group, specimens were ground with #1000 SiC paper and polished with DiaPolisher polishing points. The Ra (Average roughness), Rq (Root mean square roughness), Rv (Valley roughness), Rp (Peak roughness), Rc (2D roughness) and Sc (3D roughness) values were determined using confocal laser scanning microscopy. The data were statistically analyzed by Two-way ANOVA and Tukey multiple comparisons test (p = 0.05). The type of composite resin and polishing technique significantly affected the surface roughness of the composite resin restorations (p < 0.001). EX3 showed the smoothest surface compared to the other composite resins (p < 0.05). Mylar strip resulted in smoother surface than other polishing techniques (p < 0.05). Bis-M-GMA. a new resin monomer having low viscosity, might reduce the amount of diluent, but showed adverse effect on the surface roughness of composite resin restorations.

AC Electrical Breakdown Characteristics of an Epoxy/Mica Composite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.200-203
    • /
    • 2012
  • Epoxy/mica composite was synthesized, in order to use it as an impregnation resin in a vacuum pressure impregnation (VPI) process, for manufacturing a high voltage rotary machine. The average particle size of the mica was 5~7 ${\mu}m$ and its content was 0, 20, 30 and 40 wt%. A plasticizer or a low molecular aliphatic epoxy was also used, to decrease the viscosity of the composite. The AC electrical breakdown strength was estimated in sphere-to-sphere electrodes, and the electrical breakdown data were estimated by Weibull statistical analysis. The electrical breakdown strength became higher with the addition of mica; and that of the system with 20 wt% mica was highest. The electrical breakdown strength of the system with an aliphatic epoxy was higher than that of the system with a, plasticizer.