• 제목/요약/키워드: Low-temperature corrosion

검색결과 326건 처리시간 0.023초

5% 황산용액에서 배기밸브 보수 용접부의 부식 특성에 미치는 용접방법과 용접봉의 영향-1 (Effect of Welding method and Welding Material to Corrosion Property of Repair Weld Zone for Exhaust Valve in 5% H2SO4 Solution -1)

  • 김진경;조황래;이명훈;김윤해;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.744-752
    • /
    • 2007
  • Recently a fuel oil of the diesel engine in the ship is being changed with low quality as the oil price is higher more and more. Therefore the wear and corrosion in all parts of the engine like cylinder liner ring groove of piston crown, spindle and seat ring of exhaust valve are increased with using of heavy oil of low quality In particular the degree of wear and corrosion in between valve spindle and seat ring are more serious compared to the other parts of the engine due to operating in severe environment such as the high temperature of exhaust gas and repeating impact. Thus the repair weld to the valve spindle and seat ring is a unique method to prolong the life of the exhaust valve in an economical point of view In this study. corrosion property of both weld metal zone and base metal was investigated with some electrochemical methods such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram and polarization resistance etc. in 5% $H_2SO_4$ solution. in the case of being welded with some welding methods and welding materials to the exhaust valve specimen as the base metal. In all cases. the values of hardness of the weld metal zone were more high than that of the base metal. And their corrosion resistance were also superior to the base metal. The weld metal of A2F(AC SMAW: 2 pass welding with foreign electrode) showed a relatively good results to the corrosion resistance as well as the hardness compared to the ether welding methods and welding materials. Moreover it indicated that hardness of the weld metal by the domestic electrode was considerably high compared to that of the foreign electrode.

ALD-assisted Hybrid Processes for improved Corrosion Resistance of Hard coatings

  • Wan, Zhixin;Kwon, Se-Hun
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.105-105
    • /
    • 2016
  • Recently, high power impulse magnetron sputtering (HIPIMS) has attracted considerable attentions due to its high potential for industrial applications. By pulsing the sputtering target with high power density and short duration pulses, a high plasma density and high ionization of the sputtered species can be obtained. HIPIMS has exhibited several merits such as increased coating density, good adhesion, microparticle-free and smooth surface, which make the HIPIMS technique desirable for synthesizing hard coatings. However, hard coatings present intrinsic defects (columnar structures, pinholes, pores, discontinuities) which can affect the corrosion behavior, especially when substrates are active alloys like steel or in a wear-corrosion process. Atomic layer deposition (ALD), a CVD derived method with a broad spectrum of applications, has shown great potential for corrosion protection of high-precision metallic parts or systems. In ALD deposition, the growth proceeds through cyclic repetition of self-limiting surface reactions, which leads to the thin films possess high quality, low defect density, uniformity, low-temperature processing and exquisite thickness control. These merits make ALD an ideal candidate for the fabrication of excellent oxide barrier layer which can block the pinhole and other defects left in the coating structure to improve the corrosion protection of hard coatings. In this work, CrN/Al2O3/CrN multilayered coatings were synthesized by a hybrid process of HIPIMS and ALD techniques, aiming to improve the CrN hard coating properties. The influence of the Al2O3 interlayer addition, the thickness and intercalation position of the Al2O3 layer in the coatings on the microstructure, surface roughness, mechanical properties and corrosion behaviors were investigated. The results indicated that the dense Al2O3 interlayer addition by ALD lead to a significant decrease of the average grain size and surface roughness and greatly improved the mechanical properties and corrosion resistance of the CrN coatings. The thickness increase of the Al2O3 layer and intercalation position change to near the coating surface resulted in improved mechanical properties and corrosion resistance. The mechanism can be explained by that the dense Al2O3 interlayer acted as an excellent barrier for dislocation motion and diffusion of the corrosive substance.

  • PDF

가압경수로 원전 물-증기 순환영역에서 암모니아와 MPA의 완충세기 (Buffer Intensity of Ammonia and MPA in Water-Steam Cycle of PWRs)

  • 이인형;안현경
    • 한국산학기술학회논문지
    • /
    • 제11권7호
    • /
    • pp.2708-2712
    • /
    • 2010
  • 아민(암모니아 또는 MPA)은 가압경수로 원전 2차측 부식을 방지하는 최적 pH를 유지하기 위해 사용되고, 온도가 동일하게 유지되지 않는 물-증기 순환 영역에서 모든 아민은 평형상수에 따라 2차측에서 서로 다른 pH를 나타낸다. 부식제어에서 pH는 유일한 인자가 아니므로 두 번째 변수, 즉 불순물의 유입 또는 부식 반응으로 인해 $H^+$가 추가되거나 제거되었을 때 안정된 pH를 지속하는 능력인 완충세기의 고려가 필요하다. 온도를 고려한 완충세기는 2차측 최적 pH 제어제 선정과 유체가속부식의 특징을 기본적으로 이해할 수 있도록 한다. PWRs의 전체 운전범위에서 암모니아와 MPA의 완충세기를 조사하였다. 낮은 온도$(25{\sim}100^{\circ}C)$에서는 암모니아 그리고 높은 온도$(150{\sim}250^{\circ}C)$에서는 MPA가 부식 억제를 위한 충분한 완충세기를 나타내었다. 완충세기 측면에서, i) 최적 pH 제어제 pH 범위는 pH(T)- $1{\leq}pK_a(T){\leq}pH(T)$+0.5, ii) 아민 용액은 부식 억제를 위해 충분한 완충세기$({\beta})$를 가져야하고, iii) 최대 유체가속부식은 ${\beta}_B/{\beta}$ 비율이 최저인 온도에서 최대를 나타낸다.

첨가제를 이용한 보일러 열교환기의 고온부식 방지기술 현황 (A Technical Review on the Protective Measures of High Temperature Corrosion of Boiler Heat Exchangers with Additives)

  • 김범종;류창국;이은도;김영두;이정우;송재헌
    • 청정기술
    • /
    • 제23권3호
    • /
    • pp.223-236
    • /
    • 2017
  • 기후변화 대응을 위한 청정 화력발전 기술의 일환으로 폐기물과 바이오매스를 중심으로 한 신재생연료의 이용이 크게 증가함에 따라 특히 고온 고압 스팀 생산이 필요한 발전용 보일러 열교환기의 고온부식(High temperature corrosion) 문제가 심각한 현안으로 대두되고 있다. 이러한 문제점은 저급연료에 포함된 염화알칼리 성분이 보일러 내 열교환기 중 표면온도가 가장 높은 과열기(Superheater) 또는 재열기(Reheater)에 점착된 후 염소에 의해 부식이 가속화되어 일어난다. 이를 해결하기 위해 설계 변경, 재료 개선, 연료 전처리 등의 고온부식 회피 방법과 함께 첨가제를 이용한 고온부식 방지 기술이 활용되고 있다. 본 연구에서는 보일러에서 고온부식 방지를 위한 다양한 접근 중 특히 첨가제를 이용한 연구개발 현황을 소개한다.

오스테나이트 스테인리스강 저속인장시험편의 최적 전해연마 특성 (Optimal Electropolishing Condition of Austenitic Stainless Steel Specimens for Slow Strain Rate Tensile Testing)

  • 최민재;조은별;김동진
    • Corrosion Science and Technology
    • /
    • 제22권6호
    • /
    • pp.457-465
    • /
    • 2023
  • Irradiation-assisted stress corrosion cracking (IASCC) is one of the main degradation mechanisms of austenitic stainless steels, which are used as reactor internal materials. Slow strain rate testing (SSRT) has been widely applied to evaluate the IASCC initiation characteristics of proton-irradiated tensile specimens. Tensile specimens require low surface roughness for micro-crack observation, and electropolishing is the most important specimen pre-treatment process used for this. In this study, optimal electropolishing conditions were examined through analyzing results of polarization experiments and surface roughness measurements after electropolishing. Corrosion cell and electropolishing equipment were fabricated for polarization tests and electropolishing experiments using SSRT specimens. The experimental parameters were electropolishing time, current density, electrolyte temperature, and stirring speed. The optimal electropolishing conditions for SSRT tensile specimens made of type 316 stainless steel were evaluated as a polishing time of 180 seconds, a current density of 0.15 A/cm2, an electrolyte temperature of 60 ℃, and a stirring speed of 200 RPM.

에폭시 도막철근의 성능 실험연구 (Performance Tests of Epoxy-Coated Reinforcing Bars)

  • 최완철;김채훈;신영수;홍기섭;홍영균;정일영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.158-162
    • /
    • 1994
  • Test results to evaluate the mechanical properties of epoxy-coated bars and corrosion protection characteristics of epoxy coating on the bars are described. The results show good adhesion and abrasion resistance satisfying the requirements in relevant standards. The test results also show that for a coating thickness ranging from 150${\mu}{\textrm}{m}$ to 300${\mu}{\textrm}{m}$, satisfactory results are obtained regarding bendability. Cautions shall be required when bending epoxy-coated bars at a high bending degree and at a low temperature. The results of accelerated corrosion tests show good corrosion resistance. However, surface defects from the steel itself and insufficient blast-clean process form weak points resulting blistering or disbonding of the coating. The use of epoxy-coated bars is expected to help protect corrosion of reinforcement and extend the service life of reinforced concrete structures.

  • PDF

원자력 발전소 배관의 응력부식에 의한 파손확률 해석 (Analysis of Failure Probabilities of Pipes in Nuclear Power Plants due to Stress Corrosion Cracking)

  • 박재학;이재봉;최영환
    • 한국안전학회지
    • /
    • 제26권2호
    • /
    • pp.6-12
    • /
    • 2011
  • The failure probabilities of pipes in nuclear power plants due to stress corrosion are obtained using the P-PIE program, which is developed for evaluating failure probability of pipes based on the existing PRAISE program. Leak, big leak and LOCA(loss of coolant accident) probabilities are calculated as a function of operating time for several pipes in a domestic nuclear plant. The sensitivity analysis is also performed to find out the important parameters for the failure of pipes due to stress corrosion. The results show that the steady state oxygen concentration and steady state temperature are important parameters and failure probability is very low when the oxygen concentration is maintained according to the regulation.

440A 강의 공식부식에 미치는 첨가원소 및 열처리의 영향 (The Effect of Alloying Elements and Heat Treatment on the Pitting Corrosion of 440 A Martensitic Stainless Steels)

  • 김무길;정병호;이병찬
    • 열처리공학회지
    • /
    • 제22권2호
    • /
    • pp.67-74
    • /
    • 2009
  • 440A martensitic stainless steels which were modified with reduced carbon content (${\sim}$0.5%) and addition of small amount of nickel, vanadium, tungsten and molybdenum were manufactured. Effects of alloying elements and heat treatment on the pitting corrosion in 3.5% NaCl were investigated through the electrochemical polarization tests. The lowest pitting potential, $E_p$, was obtained when austenitizing temperature was $1250^{\circ}C$ and this is because of the grain coarsening. When austenitized at $1050^{\circ}C$ and tempered at $350{\sim}750^{\circ}C$, the highest $E_p$ was obtained at $350^{\circ}C$, while the lowest at $450^{\circ}C$ and $550^{\circ}C$ regardless of alloying elements added. But $E_p$ was increased a little at the tempering temperature of $450^{\circ}C$ and $550^{\circ}C$ when 0.4 wt.% of tungsten was added. More pitting was observed at $450{\sim}550^{\circ}C$, and pitting was formed at regions where Cr concentration is low or grain boundaries are intersecting and showed irregular shape.

EBSD Microstructural Characterisation of Oxide Scale on Low Carbon Steel

  • Birosca, S.;De Cooman, B.C.
    • Corrosion Science and Technology
    • /
    • 제7권3호
    • /
    • pp.182-186
    • /
    • 2008
  • The microstructures of the oxide scale developed at high temperature on steels are very complex and their development depends on many factors including time, temperature, oxidation conditions and alloying elements. The classical model of an oxide scale on steel consisting of wüstite, magnetite and haematite layers, is more complicated in reality and its properties change with the factors that affect their development. An understanding of the oxide scale formation and its properties can only be achieved by careful examination of the scale microstructure. The oxide scale microstructure may be difficult to characterise by conventional techniques such as optical or standard scanning electron microscopy. An unambiguous characterisation of the scale and the correct identification of the phases within the scale are difficult unless the crystallographic structure for each phase in the scale is considered and a simultaneous microstructure-microtexture analysis is carried out. In the current study Electron Backscatter Diffraction (EBSD) has been used to investigate the microstructure of iron oxide layers grown on low carbon steels at different times and temperatures. EBSD has proved to be a powerful technique for identifying the individual phases in the oxide scale accurately. The results show that different grain shapes and sizes develop for each phase in the scale depending on time and temperature.

산화물 및 비산화물 Microfiller의 첨가가 저시멘트 알루미나 캐스타블의 특성에 미치는 영향 (Influence of Various Oxide and Nonoxide Microfillers on the Thermomechanical Properties of Alumina Based Low-Cement-Castables)

  • 이승재;이상원
    • 한국세라믹학회지
    • /
    • 제32권9호
    • /
    • pp.977-988
    • /
    • 1995
  • Several oxide (ZrO2, Al2TiO5, reactive Al2O3) and nonoxide (SiC, Si3N4, "ALON" (5AlN.9Al2O3)) additives were used as a microfiller for alumina based LCC (Low-Cement-Castable). High temperature prooperties (HMOR, softening under load) and the phase changes of developed LCC on various sintering temperatures were examined. In addition, thermal shock test and corrosion test were accomplished. Based on these data the effects of each microfiller on the properties of LCC were established comparing to those of the commercial LCC with amorphous silica as a microfiller. The castables, containing reactive alumina, ZrO2 and "ALON" (5AlN.9Al2O3) as a first portion, exhibited considerably higher HMOR-values over 100$0^{\circ}C$, better creep behavior, and thermal shock resistance than those of castables with amorphous silica. The LCC with 5% Al2TiO5 showed no corrosion against molten aluminum.nst molten aluminum.

  • PDF