• 제목/요약/키워드: Low-k materials

검색결과 8,605건 처리시간 0.045초

Transparent Sol-Gel Hybrid Dielectric Material Coatings for Low k Passivation Layer

  • Yang, Seung-Cheol;Oh, Ji-Hoon;Kwak, Seung-Yeon;Bae, Byeong-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1453-1456
    • /
    • 2009
  • Transparent sol-gel hybrid dielectric material (hybrimer) coating films were fabricated by spin coating and photo or thermal curing of sol-gel derived oligosiloxane resins. Hybrimer coating films are suitable as the passivation layer of TFT in AMLCD due to low dielectric constant, small loss tangent, low leakage current density, high transmittance and thermal stability.

  • PDF

금속계와 유기계 마찰재의 분포에 따른 하이브리드 마찰재의 마찰 특성 (Tribological Properties of Hybrid Friction Materials: Combining Low-steel and Non-steel Friction Materials)

  • 김진우;장호
    • Tribology and Lubricants
    • /
    • 제28권3호
    • /
    • pp.117-123
    • /
    • 2012
  • Tribological properties of hybrid type friction materials were studied. Hybrid friction materials were produced by combining non-steel(NS) and low-steel(LS) type friction materials. The emphasis of the investigation was given to possible synergistic effects from the two different friction materials, in terms of friction stability at high temperatures and the amplitude of friction oscillation, also known as stick-slip at low sliding speeds. The high temperature friction test results showed that the friction effectiveness of the hybrid friction material was well sustained compared to LS and NS friction materials. Wear resistance of the hybrid type was similar to LS friction materials. Examination of the rubbing surfaces after tests revealed that the friction characteristics of the hybrid friction material were attributed to the wear debris produced from low-steel friction materials, which were migrated to the surface of the non-steel friction material, forming new contact plateaus. The stick-slip amplitude and its frequency were pronounced when non-steel friction material was tested, while hybrid and low-steel types showed relatively small stick-slip amplitudes. These results suggest possible improvement of tribological properties by designing a hybrid composite of low-steel and non-steel friction materials.

Effect of Coiling Temperature on the Annealed Texture in Cu/Nb Added Ultra Low Carbon Steels

  • Jiang, Yinghua;Park, Young-Koo;Lee, Oh-Yeon
    • 한국재료학회지
    • /
    • 제18권2호
    • /
    • pp.65-68
    • /
    • 2008
  • The present work was performed to investigate the effect of coiling temperature on the annealed texture in Cu/Nb-added ultra-low-carbon steels. The ultra-low-carbon steels were coiled at 650 and $720^{\circ}C$, respectively. The result showed that the Cu-added ultra-low-carbon steel at a low coiling temperature produced a desirable annealed texture related to good formability. On the other hand, Nb-added ultra-low-carbon steel at a high coiling temperature also produced a desirable texture. This is attributed to the effect of Nb, which retards recrystallization during the coiling process.

The Low-Radiation Dosimetry Application of "tris" Lyoluminescence using Electron Paramagnetic Resonance at Low Temperature

  • Son, Phil-Kook;Choi, Suk-Won;Kim, Sung-Soo;Gwag, Jin-Seog
    • Journal of Magnetics
    • /
    • 제17권3호
    • /
    • pp.172-175
    • /
    • 2012
  • We present a method for detecting very weak radiation by analyzing the inner structure of irradiated tris (lyoluminescence) materials using electron paramagnetic resonance (EPR) at low temperature. Organic materials have been looked into for use in emergency dosimetry of inhabitants around radiation accidents. However, this technology has never been applied to imperceptible radiation doses (< 0.5 Gy) because there is no proper method for detecting the change of inner structure of the subject bombed by very weak radiation at room temperature. Our results show that tris materials can be applied as a radiation detectors of very small radiation doses below 0.05 Gray, if EPR is used at low temperature (130 K ${\leq}$ T ${\leq}$ 270 K). The EPR signal intensity from the irradiated-tris sample had barely faded at all after 1 year.

Friction Characteristics of Non-Asbestos Organic (NAO) and Low-Steel Friction Materials: The Comparative Study

  • Kim, Seoun Jin;Jang, Ho
    • KSTLE International Journal
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 2000
  • Eviction characteristics of two typical friction materials (non-asbestos organic and low-steel friction materials) for an automotive brake system were investigated using an inertial brake dynamometer. In particular, the effect of sliding speed on friction coefficient was carefully investigated employing various test modes. The two friction materials were developed for commercial applications and were different mainly in the type and the amount of metallic ingredients in the friction material. The dynamometer test showed that the low-steel friction material was sensitive to the sliding speed exhibiting a negative $\mu$-v relation. On the other hand, the non-asbestos organic friction material was less sensitive to the sliding speed. The low steel friction materials with a negative $\mu$-v relation also induced larger vibration amplitude during brake applications.

  • PDF

Ti glue layer, Boron dopant, N2plasma 처리들이 Cu와 low-k 접착력에 미치는 효과 (Adhesion Property of Cu on Low-k : Ti Glue Layer, Boron Dopant, N2plasma effects)

  • 이섭;이재갑
    • 한국재료학회지
    • /
    • 제13권5호
    • /
    • pp.338-342
    • /
    • 2003
  • Adhesion between Cu and low-k films has been investigated. Low-k films deposited using a mixture of hexamethyldisilane(HMDS) and Para-xylene had a dielectric constant as low as 2.7, showing the thermally stable properties up to $400^{\circ}C$. In this study, Ti glue layer, boron dopant, and $N_2$plasma treatment were used to improve adhesion property of between Cu and low-k films. Ti glue layer slightly improved adhesion property. After $N_2$plasma treatment, the adhesion property was significantly improved due to the increased roughness and the formation of new binding states between Ti and plasma-treated PPpX : HMDS. However, $300^{\circ}C$ annealing of $N_2$plasma treated sample caused the diffusion of Cu into the PPpX : HMDS, degrading the low-k properties. In the case of Cu(B)/Ti/PPpX : HMDS, the adhesion was remarkably increased. This enhanced adhesion was attributed to formation of Ti-boride at the Cu-Ti interface. It is because the formed Ti-boride prevented the diffusion of Cu into the PPpX : HMDS and the Cu-Ti reaction at the Ti interface.

Hydrolysates of lignocellulosic materials for biohydrogen production

  • Chen, Rong;Wang, Yong-Zhong;Liao, Qiang;Zhu, Xun;Xu, Teng-Fei
    • BMB Reports
    • /
    • 제46권5호
    • /
    • pp.244-251
    • /
    • 2013
  • Lignocellulosic materials are commonly used in bio-$H_2$ production for the sustainable energy resource development as they are abundant, cheap, renewable and highly biodegradable. In the process of the bio-$H_2$ production, the pretreated lignocellulosic materials are firstly converted to monosaccharides by enzymolysis and then to $H_2$ by fermentation. Since the structures of lignocellulosic materials are rather complex, the hydrolysates vary with the used materials. Even using the same lignocellulosic materials, the hydrolysates also change with different pretreatment methods. It has been shown that the appropriate hydrolysate compositions can dramatically improve the biological activities and bio-$H_2$ production performances. Over the past decades, hydrolysis with respect to different lignocellulosic materials and pretreatments has been widely investigated. Besides, effects of the hydrolysates on the biohydrogen yields have also been examined. In this review, recent studies on hydrolysis as well as their effects on the biohydrogen production performance are summarized.