• Title/Summary/Keyword: Low tempering

Search Result 67, Processing Time 0.021 seconds

Effect of Tempering Temperatures on Tensile Properties in a Low Carbon Steel (저탄소강에서 템퍼링 온도가 인장변형에 미치는 영향)

  • 이영범;김대성;남원종
    • Transactions of Materials Processing
    • /
    • v.12 no.8
    • /
    • pp.744-749
    • /
    • 2003
  • The effect of tempering temperatures on microstructures and mechanical properties was studied in a low carbon steel. The disappearance of continuous yielding and the formation of an extended region in engineering stress-strain curves at tempering temperatures ranging from 673 to 873K was caused by the reduction of mobile dislocations during tempering and dynamic recovery during tensile deformation. In addition, the occurrence of discontinuous yielding in the sample treated at the tempering temperatures above 923K was attributed to the formation of new strain-free polygonal ferrite grain.

Effect of Tempering Temperature on Hydrogen Embrittlement of Cr-Mo Low Alloy Steels for High-pressure Gaseous Hydrogen Storage (고압수소 저장용 Cr-Mo계 저합금강의 수소취성에 미치는 템퍼링 온도의 영향)

  • M. S. Jeong;H. C. Shin;S. G. Kim;B. Hwang
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.185-192
    • /
    • 2024
  • This study examined how varying tempering temperatures affect the susceptibility of Cr-Mo low alloy steels to hydrogen embrittlement. A slow strain-rate test (SSRT) was carried out on the steels electrochemically pre-charged with hydrogen in order to examine the hydrogen embrittlement behavior. The results showed that the hydrogen embrittlement resistance of the Cr-Mo low alloy steels improved with increasing tempering temperature. Thermal desorption analysis (TDA) revealed that diffusible hydrogen content decreased with increasing tempering temperature, accompanied by a slight increase in the peak temperature. This decrease in hydrogen content was likely due to a reduction in dislocation density which served as reversible hydrogen trap sites. These findings underline the significant role of tempering temperature in enhancing the hydrogen embrittlement resistance of Cr-Mo low alloy steels.

Effect of Tempering Temperature on Tensile Behavior of Low Carbon Steel (저탄소강의 템퍼링 온도가 인장거동에 미치는 영향)

  • 이영범;김대성;남원종
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.53-56
    • /
    • 2003
  • The disappearance of continuous yielding and the formation of an extended region in engineering stress-strain curves at tempering temperatures of 673-873K is closely related to the reduction of mobile dislocations during tempering and dynamic recovery during tensile deformation. In addition, the occurrence of discontinuous yielding at tempering temperature above 923K would be attributed to the formation of new strain-free polygonal ferrite grain.

  • PDF

Effect of Low Tempering Temperature on Corrosion Resistance of 420J2 Stainless Steel (420J2 스테인리스강의 내식성에 미치는 저온 템퍼링의 영향)

  • Jung, B.H.;Kim, H.J.;Kim, M.G.;Oh, I.S.;Kim, D.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.1
    • /
    • pp.29-35
    • /
    • 2004
  • The effect of low tempering in a temperature range of $150{\sim}400^{\circ}C$ on corrosion resistance in 420J2 stainless steel austenitized at $1000^{\circ}C$ was investigated by the application of salt spray test, electrochemical pitting test in 3.5% NaCl solution and DL-EPR test for intergranular corrosion in 0.5M $H_2SO_4$+0.01M KSCN solution. In salt spray test, good corrosion resistance was obtained in a tempering temperature range of $150{\sim}250^{\circ}C$. Pitting potential was increased to the tempering temperature of $250^{\circ}C$, but decreased with the increase of temperature up to $400^{\circ}C$ And it was thought that the degradation of pitting corrosion resistance showed at the tempering temperature of around $400^{\circ}C$ was due to the precipitation of $Cr_7C_3$ of $M_7C_3$ type. The degree of sensitization showed increasing tendency with the increase of tempering temperature, and also Cr depletion phenomena were observed in the vicinity of grain boundary.

Cutting Chip Forms on the Cutting Condition and Tempering Temperatures of Lead-free Brass (무연황동의 절삭 칩 형태에 미치는 절삭조건과 템퍼링 온도의 영향)

  • Joo, Y.S.;Lee, S.B.;Kim, S.Y.;Joo, C.S.;Jung, B.H
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.1
    • /
    • pp.14-21
    • /
    • 2012
  • The effects of cutting condition and tempering temperature for the shape of cutting chip were investigated. For this purpose, a lead-free brass containing 1wt.% of Bi extruded at $750^{\circ}C$ in straight turning was used in this study. The cutting chip preferred was mainly found to be loose form of arc chips with curling discontinuity, and these were formed by shear fracture. However, some of fragmental element chip were found to be mixed when tempering temperature was as high as $500^{\circ}C$. The form and size of chip was more affected by feed rate than by tempering temperature and cutting rate. In addition, the cutting surface was observed to be formed more rough in the case of high feed rate and low cutting rate compared to low feed rate and high cutting rate.

Effects of Heat Treatment on the Micro-structures and the Mechanical Properties of 0.002% Boron-added Low Carbon Steel (0.002% 보론첨가 저탄소강의 미세조직 및 기계적 성질에 미치는 열처리의 영향)

  • Lim, Jong-Ho;Kim, Jong-Sik;Park, Byung-Ho;Lee, Jin-Hyeon;Choi, Jeong-Mook
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.303-308
    • /
    • 2011
  • The effect of heat treatment on the micro-structures and the mechanical properties of 0.002% boron added low carbon steel was investigated. The tensile strength reached the peak at about $880-890^{\circ}C$ with the rising quenching temperature and then the hardness decreased sharply, but the tensile strength hardly decreased. The tensile and yield strength decreased and the total elongation increased with a rising tempering temperature, but the tensile and yield strength sharply fell and the total elongation prominently increased from above a $400-450^{\circ}C$ tempering temperature. Tempered martensite embrittlement (TME) was observed at tempering condition of $350-400^{\circ}C$. In the condition of quenching at $890^{\circ}C$ and tempering at $350^{\circ}C$, the boron precipitates were observed as Fe-C-B and BN together. The hardness decreased in proportion to the tempering temperature untill $350^{\circ}C$ and dropped sharply above $400^{\circ}C$ regardless of the quenching temperature.

Microstructual Change and Near-threshold Fatigue Crack Growth Behaviors of Ni-Cr-Mo-V Steel by Tempering Treatments (Ni-Cr-Mo-V강의 템퍼링에 의한 미세구조 변화와 하한계 피로균열진전 특성)

  • Shin, Hoon;Moon, Yun-Bae;Kim, Sang-Tae;Kwon, Jae-Do
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.4
    • /
    • pp.266-277
    • /
    • 1997
  • Near-threshold fatigue crack growth characteristics was investigated on the Ni-Cr-Mo-V low alloy steel, which has the different microstructure obtained by tempering at various temperature. The specimens were austenized at $950^{\circ}C$ and then followed by tempering at $200^{\circ}C$, $530^{\circ}C$ and $600^{\circ}C$. Strain rate was obtained from strain gauge attached on the crack tip and crack opening point was observed through load-strain curve. Threshold stress intensity range(${\Delta}K_{th}$) was increased with increasing tempering tempuerature, but the effective threshold stress intensity rage (${\Delta}K_{eff,\;th}$) was not affected with the increasing temperature. Grain size increased with increasing tempering temperature.

  • PDF

Low Cycle Fatigue Characteristics of High Strength Low Alloy Steel (고강도 저합금강의 저주기 피로특성)

  • Kim, Jae-Hoon;Kim, Duck-Hoi;Lee, Jong-Hyun;Cho, Seong-Seock;Jeon, Byoung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.169-174
    • /
    • 2001
  • Low cycle fatigue tests are performed on high strength low alloy steels that be developed for submarine material. The relation between absorbed plastic strain energy and numbers of cycle to failure is examined in order to predict the low cycle fatigue life of structural steels by using plastic strain energy method. The cyclic properties are determined by a least square fit techniques. The life predicted by the plastic strain energy method is found to coincide with experiment data and results obtained from the Coffin-Manson method. Also the cyclic behavior of structural steels is characterized by cyclic softening with increasing number of cycle at room temperature. Especially, low cycle fatigue characteristics and microstructural changes of structural steels are investigated according to changing tempering temperatures. In the case of PFS steels, the $\varepsilon$-Cu is formed in 550C of tempering temperature and enhances the low cycle fatigue properties.

  • PDF

The Development of High Efficiency Tempering System using Microwave (마이크로파를 이용한 고 효율 해동 시스템 개발)

  • Cho, Kook-Hee;Park, Seung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.69-74
    • /
    • 2009
  • The tempering system which is developed by this research which sees energy curtailment and from the environmental side which is essential for in hazard analysis critical control point. The tempering system with development experimented frozen pork and fish. As test result, frozen pork region was not thawed occurred plentifully. Like this the actual condition, the case of frozen fish is grind and the bulk and density uniformly was formed, the pork the density was dense and was thought with the fact that the temperature difference change is big. Also after tempering from measurement location center the temperature appeared substitutionally with the low-end thing. This central part of the frozene region is thought the impedance change appears few. To hereafter respects an impedance change is thought that has the necessity which will change the structure of tempering system.

Effects of Tempering on Tensile Properties of Medium-Carbon Low-Alloy Steels (중탄소 저합금강의 인장성질에 미치는 템퍼링의 영향)

  • Lee, Young-Kook;Krauss, George
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.4
    • /
    • pp.327-337
    • /
    • 1999
  • A series of Ni-Cr-Mo alloy steels were austenitized, quenched to martensite, and tempered at various temperature and time conditions. Tensile testing was conducted at room temperature with cylindrical specimens, and hardness was measured using Rockwell hardness tester. In the tempering stage I, high strain hardening and yield strength accounted for the high ultimate strength and hardness. In the tempering stage II, strengths and hardness linearly decreased with increasing tempering temperature. Specimens tempered in the temperin stage III showed incipient discontinuous yielding and tensile strengths only slightly higher than yield strengths. Ductilities decreased slightly in specimens tempered in the tempered martensite embrittlement range, and severely decreased in specimens tempered for 10 hours at $500^{\circ}C$ in the temper embrittlement range. Specimens tempered at $600^{\circ}C$ for 10 hours showed recrystallized microstructures, a number of fine dimples, and increased strain hardening, probably due to the precipitation of alloy carbides. The simple formulae for the mechanical properties of these steels were suggested as a function of carbon content and Hollomon-Jaffe tempering parameter.

  • PDF