Browse > Article
http://dx.doi.org/10.3740/MRSK.2011.21.6.303

Effects of Heat Treatment on the Micro-structures and the Mechanical Properties of 0.002% Boron-added Low Carbon Steel  

Lim, Jong-Ho (Pohang Institute of metal Industry Advancement)
Kim, Jong-Sik (Pohang Institute of metal Industry Advancement)
Park, Byung-Ho (Pohang Institute of metal Industry Advancement)
Lee, Jin-Hyeon (Pohang Institute of metal Industry Advancement)
Choi, Jeong-Mook (Jinhap Co., Ltd.)
Publication Information
Korean Journal of Materials Research / v.21, no.6, 2011 , pp. 303-308 More about this Journal
Abstract
The effect of heat treatment on the micro-structures and the mechanical properties of 0.002% boron added low carbon steel was investigated. The tensile strength reached the peak at about $880-890^{\circ}C$ with the rising quenching temperature and then the hardness decreased sharply, but the tensile strength hardly decreased. The tensile and yield strength decreased and the total elongation increased with a rising tempering temperature, but the tensile and yield strength sharply fell and the total elongation prominently increased from above a $400-450^{\circ}C$ tempering temperature. Tempered martensite embrittlement (TME) was observed at tempering condition of $350-400^{\circ}C$. In the condition of quenching at $890^{\circ}C$ and tempering at $350^{\circ}C$, the boron precipitates were observed as Fe-C-B and BN together. The hardness decreased in proportion to the tempering temperature untill $350^{\circ}C$ and dropped sharply above $400^{\circ}C$ regardless of the quenching temperature.
Keywords
$\b{boron-added\steel}$; heat treatment; mechanical properties; precipitation behavior;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 R. C. Sharma and G. R. Purdy, Metall. Mater. Trans., 5, 939 (1974).   DOI
2 M. P. Manahan, J. Mater. Sci., 25, 3429 (1990).   DOI
3 H. Fu, Q. Xiao and H. Fu, Mater. Sci. Eng., A396, 206 (2005).
4 J. Zeman, S. Rolc, J. Buchar and J. Pokluda, ASTM Special Technical Publication : Fracture Mechanics Twenty First Symposium (STP 1074-EB), p. 396, ASTM, PA, USA (1990). DOI: 10.1520/STP19006S.   DOI
5 T. Swarr and G. Krauss, Metall. Meter. Trans., 7A, 41 (1976).
6 J. M. Lee, Y. H. Kim and B. H. Hahn, J. Kor. Inst. Met. & Mater., 26, 1190 (1988).
7 N. Takahashi and T. Fujita. Testu-to-Hagane, 61, 2604 (1975).   DOI
8 K. Yamamoto, H. G. Suzuki, Y. Oono, N. Noda and T. Inoue, Tetsu-to-Hagane, 73, 115 (1987).
9 Ph. Maitrepierre, D. Thivellier and R. Tricot, Metall. Mater. Trans., 6A, 287 (1975).
10 L. Karlsson and H. Norden, Acta Metall., 36, 35 (1988).   DOI   ScienceOn
11 B. K. Ahn and K. S. Lee, J. Kor. Inst. Met. & Mater., 34, 166 (1996).
12 K. C. Cho, Y. M. Koo and J. K. Park, J. Kor. Inst. Met. & Mater., 46, 329 (2008).
13 W. J. Jadenska and J. E. Morral, Metall. Mater. Trans., 3A, 2933 (1972).
14 R. C. Sharma and G. R. Purdy, Metall. Mater. Trans., 5, 939 (1974).   DOI
15 N. E. Hannerz, ISIJ Int. 25, 149 (1985).   DOI
16 D. T. Liewllyn, Ironmaking and Steelmaking, 20, 136 (1993).
17 B. M. Kapadia, Hardenability Concepts with Application to Steel, p. 448, AIME, Warrendale, Pennesylvania, USA (1978).
18 J. E. Morral and T. B. Cameron, Boron hardenability mechanisms, in Boron in Steel (Warrendale, PA, 1980), ed. S. K. Banerji and J. E. Morral, p. 19.
19 Ph. Maitrepierre, D. Thivellier and R. Tricot, Metall. Mater. Trans., 6, 287 (1975).   DOI