• Title/Summary/Keyword: Low temperature heating

Search Result 966, Processing Time 0.033 seconds

Analysis on the Temperature Distribution for the Billet in a Furnace (가열로내 피열재의 온도분포 해석)

  • Kwon, O.B.;Kim, M.K.;Chang, K.Y.;Kwon, H.C.;Bae, D.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.2
    • /
    • pp.24-30
    • /
    • 2004
  • In this paper, the optimal heating pattern of the furnace is sought to reduce the unnecessary energy loss. A finite difference method was used to estimate the transient temperature field of the billet in a furnace. Heat conduction equations were used in the interior nodes of the billet, while energy balances for conduction, convection, and radiation were considered in the boundary nodes. Several heating patterns for the furnace were tested and subsequently compared each other. The results showed that the temperature in the preheating zone should be set to relatively low. The temperature distributions of the billet are quite different from each other when different heating pattern are used, even though the heating patterns have the same amount of energy consumption. It reveals that there exists an optimal heating pattern to save the energy loss.

  • PDF

The Effect of Soil Warming on the Greenhouse Heating Load (지중가온이 온실의 난방부하에 미치는 영향)

  • Nam, Sang-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.51-60
    • /
    • 2006
  • In order to examine the heat transfer characteristic of a soil warming system and effects of soil warming on the greenhouse heating load, control experiments were performed in two greenhouses covered with double polyethylene film. One treated the soil warming with an electric heat wire and the other treated a control. Inside and outside air temperature, soil temperature and heat flux, and heating energy consumption were measured under the set point of heating temperature of $5,\;10,\;15,\;and\;20^{\circ}C$, respectively. Soil temperatures in a soil warming treatment were observed $4.1\;to\;4.9^{\circ}C$ higher than a control. Heating energy consumptions decreased by 14.6 to 30.8% in a soil warming treatment. As the set point of heating temperature became lower, the rate of decrease in the heating energy consumptions increased. The percentage of soil heat flux in total heating load was -49.4 to 24.4% and as the set point of heating temperature became higher, the percentage increased. When the set point of heating temperature was low in a soil warming treatment, the soil heat flux load was minus value and it had an effect on reducing the heating load. Soil heat flux loads showed in proportion to the air temperature difference between the inside and outside of greenhouse but they showed big difference according to the soil warming treatment. So new model for estimation of the soil heat flux load should be introduced. Convective heat transfer coefficients were in proportion to the 1/3 power of temperature difference between the soil surface and the inside air. They were $3.41\;to\;12.42\;W/m^{2}^{\circ}C$ in their temperature difference of $0\;to\;10^{\circ}C$. Radiative heat loss from soil surface in greenhouse was about 66 to 130% of total heating load. To cut the radiation loss by the use of thermal curtains must be able to contribute for the energy saving in greenhouse.

Experimental Study on Thermal Sensation Evaluation in Heating(part I: Emotion & Sensibility Image Evaluation by Indoor Temperature Change in Heating) (실내 난방시 온열쾌적성 평가에 관한 연구(part I;실내 난방시 실온변화에 따른 감성이미지 평가))

  • 한남규;금종수;김형철;김동규;김창연
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2003.05a
    • /
    • pp.41-46
    • /
    • 2003
  • In recently, Is inhabiting more than 70% indoors during a day in case of company employee and ordinary people which is looking at usual business. Therefore Thermal comfort of human body about indoor temperature and air flow acting very heftily. When intestine temperature is fallen for external low temperature and air flow in winter in case enter into heated room feel comfort by effect of temperature and feel comfort or discomfort by room heating condition gradually. Therefore it is important that grasp thermal comfort about temperature and air flow in heating to keep continuous comfort in indoor dwelling. Temperature and thermal comfort factor of emotion & sensitivity image exert fair effect since heating middle although thermal comfort change greatly effect on sensation about temperature at actuality heating early. Need much study yet in vantage point of emotion & sensitivity although much study were held about thermal and comfort sensibility and when heat in existing research until now. Therefore this study is targeting that evaluate thermal comfort through introduction of estimation method by emotion & sensibility image real and synthetic sensibility about thermal environment that is becoming winter heating.

  • PDF

Electrical Property Evaluation of Printed Copper Nano-Ink Annealed with Infrared-Lamp Rapid Thermal Process (적외선 램프를 이용하여 소결한 구리 나노잉크의 전기적 특성 평가에 관한 연구)

  • Han, Hyun-Suk;Kim, Changkyu;Yang, Seung-Jin;Kim, Yoon-Hyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.216-221
    • /
    • 2016
  • A sintering process for copper based films using a rapid thermal process with infrared lamps is proposed to improve the electrical properties. Compared with films produced by conventional thermal sintering, the microstructure of the copper based films contained fewer internal and interfacial pores and larger grains after the rapid thermal process. This high-density microstructure is due to the high heating rate, which causes the abrupt decomposition of the organic shell at higher temperatures than is the case for the low heating rate; the high heating rate also induces densification of the copper based films. In order to confirm the effect of the rapid thermal process on copper nanoink, copper based films were prepared under varying of conditions such as the sintering temperature, time, and heating rate. As a result, the resistivity of the copper based films showed no significant changes at high temperature ($300^{\circ}C$) according to the sintering conditions. On the other hand, at low temperatures, the resistivity of the copper based films depended on the heating rate of the rapid thermal process.

Evaluation on Compressive Strength of Mortar and Concrete at Early Age Using Variable Cement and Self-heating Binder (시멘트 산지 및 자기발열분체 사용에 따른 모르타르 및 콘크리트의 저온에서의 압축강도성능 평가)

  • Hong, Seok-Beom;Kim, Woo-Jae;Yoo, Jo-Hyeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.152-153
    • /
    • 2016
  • In this research, we evaluate the performance for preventing frost damage at early age of mortar using variable cement and self-heating binder. Purpose of final research is preventing freezing and thawing by making the compressive strength 5MPa in 3days below zero temperature without heat curing. We compare the compressive strength of mortar and concrete using variable cements and self-heating binder in low temperature.

  • PDF

Mechanical Properties of Aluminium Alloy with Cellular Structure. (미세기공 알루미늄 소재의 기계적 성질)

  • 윤성원;이승후;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.695-698
    • /
    • 2002
  • Induction heating process is one of the most efficient heating process in terms of temperature control accuracy and heating time saving. In the past study, fabrication process of cellular 6061 alloys by powder metallurgical route and induction heating process was studied. To supplement the framing conditions that studied in past study, effect of induction heating capacity and holding time at foaming temperature were investigated. Under the achieved framing conditions, teamed 6061 alloys were fabricated for variation of foaming temperature, and porosities(%)-foaming temperature curves were obtained by try-error experimental method. Uniaxial compression tests were performed to investigate the relationship between porosities(%) and stress-strain curves of framed 6061 alloy. Also, energy absorption capacity and efficiency were calculated from stress-strain curves to investigated. Moreover, dependence of plateau stress on strain rate was investigated in case of cellular 6061 alloy with low porosities(%)

  • PDF

Anti-apoptotic and Neuroprotective Effects of Bambusae Caulis in Liquamen Manufactured by Different Production Process (생산공정 차이에 따른 죽력(竹瀝)이 apoptosis 및 신경세포 보호 효과에 미치는 영향)

  • Choi, Chan-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.5
    • /
    • pp.1250-1259
    • /
    • 2007
  • Bambusae Caulis in Liquamen(BCL) has been commonly prescribed for stroke patients in the traditional Oriental medicine. So this study is aims to investigate the anti-apoptotic and neuroprotective effects of Bambusae Caulis in Liquamen(BCL) manufactured by different production process on the focal ischemia induced by intraluminal filament insertion in rats. The focal ischemia was induced by intraluminal filament insertion into middle cerebral artery. The animals were divided into four groups (n=15 in each group). The ischemia induced and not treated group : Control group, the ischemia induced and oral medication of the three kinds of BCL : BCL-A group, BCL-B group, BCL-C group. BCL-A was produced by heating at a low temperature$(250^{\circ} C)$ in electric kiln and filtering. BCL-B was produced by heating at a high temperature$(900^{\circ} C{\sim}1,000^{\circ}C)$ in yellow earth kiln and refining and filtering. BCL-C was produced by heating at a low temperature$(400^{\circ} C)$ yellow earth kiln and no refining and filtering. The anti-apoptotic and neuroprotective effects of the oral medication of BCL were observed by Bax, BCL-2, cytochrome c, mGluR5, cresyl violet and ChAT-stain. Our study suggests that BCl-A(was produced by heating at a low temperature in electric kiln and filtering) and BCL-C(was produced by heating at a low temperature in yellow earth kiln and no refining and filtering) show anti-apoptotic and neuroprotective effects on the focal ischemia induced by intraluminal filament insertion in rats and BCL-C is more effective than BCL-A.

A Study on Temperature Variation of Coil on BAF Annealing in HNx Atmospheric Gas (HNx 분위기가스중에서 BAF소둔시 코일의 온도변화에 관한 연구)

  • 전언찬;김순경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1227-1234
    • /
    • 1994
  • A cold spot temperature control system for the batch annealing furnace has been established in order to reduce energy consumption which is essential to improve productivity and stabilize the properties of products. A relationship between annealing cycle time and gas flow rate is developed and also for the variation of coil cold spot temperature with time during heating, and actual temperature measurements at mid-width of each coil during soaking. The results of the temperature variation effect on the cold rolled steel sheet batch annealing are as follows. (1) Cooling rate increasing gradually with increasing atmospheric gas flow, but heating rate is hardly increasing without atmospheric gas component change. (2) In case of short time heating, the slowest heating part is the center of B coil and in case of ling time heating, the low temperature point moves from the center of coil to inside coil. (3) The outside of top coil is the highest temperature point under heating, which becomes the lowest temperature point under cooling. (4) Soaking time determination depends on the input coil width, and soaking time for quality homogenization of 1214 mm width coil must be 2 hours longer than that of 914 mm width coil.

Effects of Gas Injection on the Heating Performance of a Two-Stage Heat Pump Using a Twin Rotary Compressor with Refrigerant Charge Amount

  • Heo, Jae-Hyeok;Jeong, Min-Woo;Jeon, Jong-Ug;Kim, Yong-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.3
    • /
    • pp.77-82
    • /
    • 2008
  • For heat pumps used in a cold region, it is very important to obtain appropriate heating capacity. Several studies using a variable speed compressor and an additional heater have been performed to enhance heating capacity at low ambient temperatures. However, for outdoor temperature conditions below $-15^{\circ}C$, it is still difficult to obtain enough heating capacity above the rated value. In recent studies, the application of gas injection technique into a two-stage heat pump yielded noticeable heating performance improvement at low temperature conditions. In this study, the heating performance of a two-stage gas injection heat pump with a rated capacity of 3.5 kW was measured and analyzed by varying refrigerant charge amount and EEV opening at the standard heating condition. The heating performance of the two-stage gas injection heat pump was compared with that of a two-stage non-injection heat pump. The heating capacity and COP of the two-stage gas injection heat pump were improved by 2-10% at the optimal charging condition over those of the two-stage non-injection heat pump.

Simulation Experiment of PEMFC Using Insulation Vessel at Low Temperature Region (저온영역에서 단열용기를 이용한 연료전지 모의 실험)

  • Jo, In-Su;Kwon, Oh-Jung;Kim, Yu;Hyun, Deok-Su;Park, Chang-Kwon;Oh, Byeong-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.5
    • /
    • pp.403-409
    • /
    • 2008
  • Polymer electrolyte membrane fuel cell (PEMFC) is very interesting power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, improvement of performance, effect of temperature and initial start at low temperature. These problems can be approached to be solved by using experiment and mathematical method which are general principles for analysis and optimization of control system for heat and hydrogen detecting management. In this paper, insulation vessel and control system for stable operation of fuel cell at low temperature were developed for experiment. The constant temperature capability and the heating time at sub-zero temperatures with insulation control system were studied by using a heating bar of 60W class. PEMFC stack which was made by 4 cells with $50\;mc^2$ active area in each cell is a thermal source. Times which take to reach constant temperature by the state of insulation vacuum were measured at variable environment temperatures. The test was performed at two conditions: heating mode and cooling mode. Constant temperature capability was better at lower environment temperature and vacuum pressure. The results of this experiment could be used as basis data about stable operation of fuel cell stack in low temperature zone.