• Title/Summary/Keyword: Low temperature etching

검색결과 170건 처리시간 0.026초

Sputter etching에 의한 양모, 견직물의 농색효과 (Effects of Color Depth on Wool and Silk Fabrics Treated Sputter Etching)

  • 조환;구강
    • 한국염색가공학회지
    • /
    • 제6권3호
    • /
    • pp.44-51
    • /
    • 1994
  • Wool and silk fabrics dyed with C.l. Acid Black 155 were subjected to sputter etching and exposed to a low temperature argon plasma. Color depth of shade of the fabrics increased considerably, but sputter etching was more effectively than argon low temperature plasma treatment. And measured for any significant chemical modification by ESCA (XPS). Sputter etching and argon low temperature plasma treatments incorporated oxygen atoms into the surface.

  • PDF

저온 플라즈마 및 Sputter Etching 처리에 의한 염색직물의 심색화 가공 (Bathochromic Finish of Dyed Fabrics by Low-Temperature Plasma and Sputter Etching Treatment)

  • Pak, Pyong Ki;Lee, Mun Cheul;Park, Geon Yong
    • 한국염색가공학회지
    • /
    • 제8권2호
    • /
    • pp.56-63
    • /
    • 1996
  • Low-temperature plasma treatment or sputter etching is of interest as one of the techniques to modify polymer surface. In this study, poly(ethylene terephthalate)(PET), nylon 6 and cotton fabrics dyed three black dyes were subjected to low-temperature argon plasma and also sputter etching. In relation to bathochromic effect, the surface characteristics of the treated fabrics and films were investigated by means of critical surface tension, SEM and ESCA measurement. The depth of shade of fabrics more increased by the sputter etching technique than argon plasma treatment. Many microcraters on the fiber surface formed by the sputter etching resulted in increase of surface area of the fiber and wettability, but the hydrophobic group was increased by the results of ESCA analysis. In particular the change in reflective index of the fibers was much more effective than the chemical composition of the fiber surface on increasing of the depth of shade.

  • PDF

Plasma Etching Process based on Real-time Monitoring of Radical Density and Substrate Temperature

  • Takeda, K.;Fukunaga, Y.;Tsutsumi, T.;Ishikawa, K.;Kondo, H.;Sekine, M.;Hori, M.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.93-93
    • /
    • 2016
  • Large scale integrated circuits (LSIs) has been improved by the shrinkage of the circuit dimensions. The smaller chip sizes and increase in circuit density require the miniaturization of the line-width and space between metal interconnections. Therefore, an extreme precise control of the critical dimension and pattern profile is necessary to fabricate next generation nano-electronics devices. The pattern profile control of plasma etching with an accuracy of sub-nanometer must be achieved. To realize the etching process which achieves the problem, understanding of the etching mechanism and precise control of the process based on the real-time monitoring of internal plasma parameters such as etching species density, surface temperature of substrate, etc. are very important. For instance, it is known that the etched profiles of organic low dielectric (low-k) films are sensitive to the substrate temperature and density ratio of H and N atoms in the H2/N2 plasma [1]. In this study, we introduced a feedback control of actual substrate temperature and radical density ratio monitored in real time. And then the dependence of etch rates and profiles of organic films have been evaluated based on the substrate temperatures. In this study, organic low-k films were etched by a dual frequency capacitively coupled plasma employing the mixture of H2/N2 gases. A 100-MHz power was supplied to an upper electrode for plasma generation. The Si substrate was electrostatically chucked to a lower electrode biased by supplying a 2-MHz power. To investigate the effects of H and N radical on the etching profile of organic low-k films, absolute H and N atom densities were measured by vacuum ultraviolet absorption spectroscopy [2]. Moreover, using the optical fiber-type low-coherence interferometer [3], substrate temperature has been measured in real time during etching process. From the measurement results, the temperature raised rapidly just after plasma ignition and was gradually saturated. The temporal change of substrate temperature is a crucial issue to control of surface reactions of reactive species. Therefore, by the intervals of on-off of the plasma discharge, the substrate temperature was maintained within ${\pm}1.5^{\circ}C$ from the set value. As a result, the temperatures were kept within $3^{\circ}C$ during the etching process. Then, we etched organic films with line-and-space pattern using this system. The cross-sections of the organic films etched for 50 s with the substrate temperatures at $20^{\circ}C$ and $100^{\circ}C$ were observed by SEM. From the results, they were different in the sidewall profile. It suggests that the reactions on the sidewalls changed according to the substrate temperature. The precise substrate temperature control method with real-time temperature monitoring and intermittent plasma generation was suggested to contribute on realization of fine pattern etching.

  • PDF

대기압 저온 플라스마에 의한 ITO(Indium Tin Oxide)박막 식각의 수소(H$_2$)효과 (Effect of Hydrogen in ITO(Indium Tin Oxide) Thin Films Etching by Low Temperature Plasma at Atmospheric Pressure)

  • 이봉주
    • 대한전자공학회논문지SD
    • /
    • 제39권8호
    • /
    • pp.12-16
    • /
    • 2002
  • 산화인듐(ITO)박막은 대기압 저온 플라스마에 의해 식각이 가능하다는 것을 확인했다. 식각은 수소유량 4 sccm에서 가장 깊게 발생하여, 120 /min를 나타내었다. 식각속도는 Hα*의 발광강도와 대응하였다. ITO박막의 식각 메커니즘은 Hα*에 의해 환원이 된후, 남게 된 금속 화합물은 CH*과 반응하여 기판으로부터 이탈한다고 생각된다. 식각은 식각시간 50초 이상에서부터, 기판온도 145℃ 이상부터 발생하기 시작하였다. 활성화 에너지는 Arrehenius plots으로부터 0.16eV(3.75kcal/mole)를 얻었다

Dependence of cation ratio in Oxynitride Glasses on the plasma etching rate

  • Lee, Jung-Ki;Hwang, Seong-Jin;Lee, Sung-Min;Kim, Hyung-Sun
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.44.2-44.2
    • /
    • 2009
  • Polycrystalline materials suchas yttria and alumina have been applied as a plasma resisting material for the plasma processing chamber. However, polycrystal line material may easily generate particles and the particles are sources of contamination during the plasma enhanced process. Amorphous material can be suitable to prevent particle generation due to absence of grain-boundaries. We manufactured nitrogen-containing $SiO_2-Al_2O_3-Y_2O_3$ based glasses with various contents of silicon and fixed nitrogen content. The thermal properties, mechanical properties and plasma etching rate were evaluated and compared for the different composition samples. The plasma etching behavior was estimated using XPS with depth profiling. From the result, the plasma etching rate highly depends on the silicon content and it may results from very low volatile temperature of SiF4 generated during plasma etching. The silicon concentration at the plasma etched surface was very low besides the concentration of yttrium and aluminum was relatively high than that of silicon due to high volatile temperature of fluorine compounds which consisted with aluminum and yttrium. Therefore, we conclude that the samples having low silicon content should be considered to obtain low plasma etching rate for the plasma resisting material.

  • PDF

The Optimum Condition of Anisotropic Bulk(10) Si Etching with KOH for High Selectivity and Low Surface Roughness

  • Lim, Hyung-Teak;Kim, Yong-Kweon;Lee, Seung-Ki
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권5호
    • /
    • pp.108-113
    • /
    • 1997
  • In this paper, the optimum condition of (110) Si etching with the potassium hydroxide(KOH) etchant is presented. Although several researches on (110) Si anisotropic etching have been studied, there has been lack of effects of mask quality and etching conditions on the selectivity and the roughness o the etched surface. Three kinds of masks (film, emulsion and E-beam mask) were used in order to verify the effect of etching properties. Anisotropic bulk etching depends on the crystalline orientation and the concentration and temperature of the etchant. In order to investigate the effect of etching conditions on selectivity and the roughness of the etched surface, the concentration of the etchant was varied from 35 to 45 per cent in weight with increments by 5 per cent and the temperature was changed from 70 to 90$^{\circ}C$ with increments by 10$^{\circ}C$. The combination of the temperature of 70$^{\circ}C$ and the concentration of 40wt.% was found to be the optimum etching condition for high selectivity. Etched surfaces show minimum surfaces show minimum surface roughness at a temperature of 80$^{\circ}C$ and a concentation of 40wt.%. Comb structures with various comb widths were fabricated and the lengths of the combs wree measured with several etching time durations. A micro comb structure 525$\mu\textrm{m}$ high was fabricated for MEMS application.

  • PDF

고효율 후면 전극형 태양전지를 위한 나노 Paste의 적용에 대한 연구 (The application of Nano-paste for high efficiency back contact Solar cell)

  • 남동헌;이규일;박용환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.53.2-53.2
    • /
    • 2010
  • In this study, we focused on our specialized electrode process for Si back-contact crystalline solar cell. It is different from other well-known back-contact cell process for thermal aspect and specialized process. In general, aluminum makes ohmic contact to the Si wafer and acts as a back surface reflector. And, silver is used for low series resistance metal grid lines. Aluminum was sputtered onto back side of wafer. Next, silver is directly patterned on the wafer by screen printing. The sputtered aluminum was removed by wet etching process after rear silver electrode was formed. In this process, the silver paste must have good printability, electrical property and adhesion strength, before and after the aluminum etching process. Silver paste also needs low temperature firing characteristics to reduce the thermal budget. So it was seriously collected by the products of several company of regarding low temperature firing (below $250^{\circ}C$) and aluminum etching endurance. First of all, silver pastes for etching selectivity were selected to evaluate as low temperature firing condition, electrical properties and adhesive strength. Using the nano- and micron-sized silver paste, so called hybrid type, made low temperature firing. So we could minimize the thermal budget in metallization process. Also the adhesion property greatly depended on the composition of paste, especially added resin and inorganic additives. In this paper, we will show that the metallization process of back-contact solar cell was realized as optimized nano-paste characteristics.

  • PDF

저온 플라즈마 발생과 응용 (Generation of Low Temperature Plasma and Its Application)

  • 이봉주
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권9호
    • /
    • pp.413-416
    • /
    • 2002
  • It was reported that low temperature plasma developed by our group was apparently homogeneous and stable at atmospheric pressure, and was generated if the alumina was used as a dielectric insulating material and Ar gas as a plasma gas. This is a structure in which the dielectric materials are covered and arranged in parallel in the one side of electrode. In this experiment, we discovered that dielectric material was important to generate normal electric discharge. To examine the effect of dielectric material on the electric discharge characteristic, the voltage and current of the plasma was measured and the electrical effect of dielectric material was examined. Also, it was applied to an etching of tin oxide films.

전자 공명을 이용한 저온 플라즈마 식각에 관한 연구 (A Study on the Law Temperature Plasma Etching using Electron Cyclotron Resonance)

  • 이석현;김재성;황기웅;김원규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.850-853
    • /
    • 1992
  • A cryogenic electron cyclotron resonance plasma etching system has been built to study wafer-temperature in the silicon etching characteristics. The wafer temperature was controlled from -150 to +30 $^{\circ}C$ during etching using the liquid nitrogen cooled helium gas. Although silicon was etched isotropically in $SF_6$ plasma at room temperatures, we found that it is possible to suppress the etch undercut in Si by reducing a substrate temperature without side wall passivation. In addition, the selectivity of silicon to photoresist was improved considerably at a low wafer temperature. Etch rates, anisotropy and selectivity to photo resist are measured as a function of the wafer temperature in the region of -125 $\sim$ 25$^{\circ}C$ and rf bias power of 20W $\sim$ 80W.

  • PDF

MICP를 이용한 Platinum 건식 식각 특성에 관한 연구 (A Study on the Properties of Platinum Dry Etching using the MICP)

  • 김진성;김정훈;김윤택;주정훈;황기웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.279-281
    • /
    • 1997
  • The properties of Platinum dry etching were investigated in MICP(Magnetized Inductively Coupled Plasma). The problem with Platinum etching is the redeposition of sputtered Platinum on the sidewall. Because of the redeposits on the sidewall, the etching of patterned Platinum structure produce feature sizes that exceed the original dimension of the PR size and the etch profile has needle-like shape.[1] Generally, $Cl_2$ plasma is used for the fence-free etching.[1][2][3] The main object of this study was to investigate a new process technology for the fence-free Pt etching. Platinum was etched with Ar plasma at the cryogenic temperature and with Ar/$SF_6$ plasma at room temperature. In cryogenic etching, the height of fence was reduced to 20% at $-190^{\circ}C$ compared with that of room temp., but the etch profile was not fence-free. In Ar/$SF_6$ Plasma, chemical reaction took part in etching process. The trend of properties of Ar/$SF_6$ Plasma etching is similar to that of $Cl_2$ Plasma etching. Fence-free etching was possible, but PR selectivity was very low. A new gas chemistry for fence-free Platinum etching was proposed in this study.

  • PDF