• Title/Summary/Keyword: Low temperature annealing

Search Result 686, Processing Time 0.037 seconds

Application of Modified Rapid Thermal Annealing to Doped Polycrystalline Si Thin Films Towards Low Temperature Si Transistors

  • So, Byung-Soo;Kim, Hyeong-June;Kim, Young-Hwan;Hwang, Jin-Ha
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.552-556
    • /
    • 2008
  • Modified thermal annealing was applied to the activation of the polycrystalline silicon films doped as p-type through implantation of $B_2H_6$. The statistical design of experiments was successfully employed to investigate the effect of rapid thermal annealing on activation of polycrystalline Si doped as p-type. In this design, the input variables are furnace temperature, power of halogen lamps, and alternating magnetic field. The degree of ion activation was evaluated as a function of processing variables, using Hall effect measurements and Raman spectroscopy. The main effects were estimated to be furnace temperature and RTA power in increasing conductivity, explained by recrystallization of doped ions and change of an amorphous Si into a crystalline Si lattice. The ion activation using rapid thermal annealing is proven to be a highly efficient process in low temperature polycrystalline Si technology.

Study on Laser irradiation characteristics for Oxide TFTs on Flexible Substrate (산화물 반도체 Flexible Display 소자 제작을 위한 Laser 가공 특성 연구)

  • Son, Hyeok;Lee, Gong-Su;Jeong, Han-Uk;Kim, Gwang-Yeol;Choe, Yeong-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.203-203
    • /
    • 2009
  • Low temperature annealing for oxide TFTs including IGZO on PI substrate is the essential process to fabricate flexible display devices, since low heat-resistance on PI and PEN substrates limits the temperature range. Laser annealing is one of the promising candidates for low temperature process, and it has been used for various application in semiconductor and LCD fabrication. We irradiated laser to solution-based IGZO thin films on PI substrate were irradiated to laser beam, and investigated laser damage of PI layer. Based on transmittance analysis, wavelength(532nm) and scan speed(1000mm/s) is the optimized condition for laser irradiation about ink-Jet printed oxide TFTs on PI substrates.

  • PDF

Improvement of Device Characteristic on Solution-Processed InGaZnO Thin-Film-Transistor (TFTs) using Microwave Irradiation

  • Moon, Sung-Wan;Cho, Won-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.249-254
    • /
    • 2015
  • Solution-derived amorphous indium-gallium-zinc oxide (a-IGZO) thin-film-transistor (TFTs) were developed using a microwave irradiation treatment at low process temperature below $300^{\circ}C$. Compared to conventional furnace-annealing, the a-IGZO TFTs annealed by microwave irradiation exhibited better electrical characteristics in terms of field effect mobility, SS, and on/off current ratio, although the annealing temperature of microwave irradiation is much lower than that of furnace annealing. The microwave irradiated TFTs showed a smaller $V_{th}$ shift under the positive gate bias stress (PGBS) and negative gate bias stress (NGBS) tests owing to a lower ratio of oxygen vacancies, surface absorbed oxygen molecules, and reduced interface trapping in a-IGZO. Therefore, microwave irradiation is very promising to low-temperature process.

Analysis of Low Frequency Noise Variation in Temperature Sensor With Bi2Mg2/3Nb4/3O7 (Bi2Mg2/3Nb4/3O7을 사용한 온도센서의 저주파 잡음 특성)

  • Cho, Il Hwan;Seo, Dongsun
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.486-490
    • /
    • 2015
  • Sensitivity characteristics of temperature sensor with $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMNO) layer were investigated with low frequency noise measurement. Temperature sensor with BMNO layer had high reliability and high sensitivity comparing with conventional MOS type temperature sensor. Annealing temperature variation effects with $600^{\circ}C$, $700^{\circ}C$ and $800^{\circ}C$ were measured and analyzed. Annealing temperature determines trap distribution and $700^{\circ}C$ annealing sample has different pattern comparing with other samples. Results of low frequency noise can offer the design guide of temperature sensor performance.

Microwave-Enhanced Low-Temperature Crystallization of Amorphous Silicon Films for TFTs

  • Ahn, Jin-Hyung;Eom, Ji-Hye;Ahn, Byung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.177-180
    • /
    • 2002
  • Microwave has been utilized for low-temperature crystallization of amorphous Si films. Microwave annealing lowered the crystallization temperature and shortened the annealing time. The combination of Ni and microwave applications on a-Si films further enhanced the crystallization. The enhancement was due to both reduced nucleation activation energy and growth activation energy.

  • PDF

Annealing Effects on Electron Transport properties of Nanostructured Thin Film (Annealing에 의한 나노구조 박막의 전기적 특성 연구)

  • Kouh, Tae-Joon
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.98-101
    • /
    • 2006
  • Electron transport properties of nanostructured Pb thin film, consisting of grains, have been studied. Nanostructured thin films were fabricated on a substrate held at low temperature and their thicknesses were less than 10nm. While temperature of the film increased from 1.3 K to room temperature, the change in normal state sheet resistance has been measured. As the annealing temperature varies, the normal state sheet resistance shows a non-monotonic and irreversible change. Such behavior can be understood with the Pb grain growth due to annealing of the film.

Oxidative Etching of Imprinted Nanopatterns by Combination of Vacuum Annealing and Plasma Treatment

  • Park, Dae Keun;Kang, Aeyeon;Jeong, Mira;Lee, Jae-Jong;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.251.1-251.1
    • /
    • 2013
  • Combination of oxidative vacuum annealing and oxygen plasma treatment can serve as a simple and efficient method of line-width modification of imprinted nanopatterns. Since the vacuum annealing and oxygen plasma could lead mass loss of polymeric materials, either one of the process can yield a narrowed patterns. However, the vacuum annealing process usually demands quite high temperatures (${\geq}300^{\circ}C$) and extended annealing time to get appreciable line-width reduction. Although the plasma treatment may be considered as an effective low temperature rapid process for the line-width reduction, it is also suffering for the lowered controllability on application to very fine patterns. We have found that the vacuum annealing temperature can be lowered by introducing the oxygen in the vacuum process and that the combination of oxygen plasma treatment with the vacuum annealing could yield the best result in the line-with reduction of the imprinted polymeric nanopatterns. Well-defined line width reduction by more than 50% was successfully demonstrated at relatively low temperatures. Furthermore, it was verified that this process was applicable to the nanopatterns of different shapes and materials.

  • PDF

Formation of Silver Nanoparticles on Silica by Solid-State Dewetting of Deposited Film (증착 박막의 비젖음에 의한 실리카 표면 위 은나노 입자형성)

  • Kim, Jung-Hwan;Choi, Chul-Min;Hwang, So-Ri;Kim, Jae-Ho;Oh, Yong-Jun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.856-860
    • /
    • 2010
  • Silver nanoparticles were formed on silica substrates through thin film dewetting at high temperature. The microstructural and morphological evolution of the particles were characterized as a function of processing variables such as initial film thickness, annealing time, and temperature. Silver thin films were deposited onto the silica using a pulsed laser deposition system and annealed in reducing atmosphere to induce agglomeration of the films. The film thicknesses before dewetting were in the range of 5 to 25 nm. A noticeable agglomeration occurs with annealing at temperatures higher than $300^{\circ}C$, and higher annealing temperature increases particle size uniformity for the same film thickness sample. Average particle size linearly correlates to the film thickness, but it does not strongly depend on annealing temperature and time, although threshold temperature for complete dewetting increases with an increase of film thickness. Lower annealing temperature develops faceted surface morphology of the silver particles by enhancing the growth of the low index crystal plane of the particles.

Preparation of Intrinsic ZnO Films at Low Temperature Using Oxidation of ZnS Precursor and Characterizion of the Films

  • Park, Do Hyung;Cho, Yang Hwi;Shin, Dong Hyeop;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.115-121
    • /
    • 2013
  • ZnO film has been used for CIGS solar cells as a buffer layer as itself or by doping Mg and Sn; ZnO film also has been used as a transparent conducting layer by doping Al or B for solar cells. Since ZnO itself is a host material for many applications it is necessary to understand the electrical and optical properties of ZnO film itself with various preparation conditions. We prepared ZnO films by converting ZnS precursor into ZnO film by thermal annealing. ZnO film was formed at low temperature as low as $500^{\circ}C$ by annealing a ZnS precursor layer in air. In the air annealing, the electrical resistivity decreased monotonically with increasing annealing temperature; the intensity of the green photoluminescence at 505 nm increased up to $750^{\circ}C$ annealing. The electrical resistivity further decreased and the intensity of green emission also increased in reducing atmospheres. The results suggest that deep-level defects originated by oxygen vacancy enhanced green emission, which reduce light transmittance and enhance the recombination of electrons in conduction band and holes in valence. More oxidizing environment is necessary to obtain defect-free ZnO film for higher transparency.

Effects on Heat Treatment Methods in Indium-Tin-Oxide Films by DC Magnetron Sputter of Powder Target

  • Kim, H.H.;Shin, J.H.;Baek, J.Y.;Shin, S.H.;Park, K.J.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.1
    • /
    • pp.22-26
    • /
    • 2001
  • ITO (Indium-tin-oxide) thin films were deposited on glass substrates by a dc magnetron sputtering system using ITO powder target. The methods of heat treatment are important factor to obtain high quality ITO films with low electrical resistivity and good optical transmittance. Therefore, both methods of the substrate temperature and post-deposition annealing temperature have been compared on the film structural, electrical and optical properties. A preferred orientations shifts from (411) to (222) peak at annealing temperature of 200$\^{C}$. Minimum resistivity of ITO film is approximately 8.7$\times$10$\^$-4/ Ωcm at substrate temperature of 450$\^{C}$. Optical transmittances at post annealing temperature above 200$\^{C}$ are 90%. As a result, the minimum value of annealing temperature that is required for the recrystallization of as-deposited ITo thin films is 200$\^{C}$.

  • PDF