• 제목/요약/키워드: Low strength concrete

검색결과 1,245건 처리시간 0.023초

Effect of moisture on the compressive strength of low-strength hollow concrete blocks

  • Syiemiong, Hopeful;Marthong, Comingstarful
    • Computers and Concrete
    • /
    • 제23권4호
    • /
    • pp.267-272
    • /
    • 2019
  • In order to study the effect of moisture on the compressive strength of low-strength hollow concrete blocks, an experimental study was carried out on 96 samples of locally manufactured hollow concrete blocks collected from three different locations. Uniaxial compression tests were conducted on dry specimens and three types of saturated specimens with moisture contents of 30%, 50% and 80% respectively. The range of moisture content adopted covered the range within which the concrete block samples are saturated in the dry and monsoon seasons. The compressive strength of low-strength hollow concrete blocks decreases with increase in moisture content and the relationship between compressive strength of hollow concrete blocks and their moisture content can be considered to be linear. However, the strength degradation of 30% moist concrete blocks with respect to dry blocks is relatively low and can be considered to be comparable to dry concrete blocks. A formula indicating the relationship between the moisture content and compressive strength of low-strength hollow concrete blocks is also proposed.

저열 포틀랜드 시멘트 콘크리트의 고강도 영역에서의 강도발현 특성 (Strength Development of Low Heat Portland Cement Concrete in High Strength Range)

  • 하재담;엄태선;이종열;권영호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.353-356
    • /
    • 2005
  • Strength development of low heat portland cement(Type IV) concrete in high strength range is tested. In this study strength development according to water-binder ratio, strength development according to age, effect of fly ash and super plasticizer are tested. This study tests effect of low heat portland cement in high strength range concrete and provide guide line concrete mix design for later study and/or construction.

  • PDF

Low strength concrete members externally confined with FRP sheets

  • Ilki, Alper;Kumbasar, Nahit;Koc, Volkan
    • Structural Engineering and Mechanics
    • /
    • 제18권2호
    • /
    • pp.167-194
    • /
    • 2004
  • In this paper axial loading tests on low strength concrete members, which were confined with various thickness of carbon fiber reinforced polymer (CFRP) composite sheets are described. Totally 46 specimens with circular, square and rectangular cross-sections with unconfined concrete compressive strengths between 6 and 10 MPa were included in the test program. During the tests, a photogrammetrical deformation measurement technique was also used, as well as conventional measurement techniques. The contribution of external confinement with CFRP composite sheets to the compressive behavior of the specimens with low strength concrete is evaluated quantitatively, in terms of strength, longitudinal and lateral deformability and energy dissipation. The effects of width/depth ratios and the corner radius of the specimens with rectangular cross-section on the axial behavior were also examined. It was seen that the effectiveness of the external confinement with CFRP composite sheets is much more pronounced, when the unconfined concrete compressive strength is relatively lower. It was also found that the available analytical expressions proposed for normal or high strength concrete confined by CFRP sheets could not predict the strength and deformability of CFRP confined low strength concrete accurately. New expressions are proposed for the compressive strength and the ultimate axial strain of CFRP confined low strength concrete.

Structural performance of recycled aggregates concrete sourced from low strength concrete

  • Goksu, Caglar;Saribas, Ilyas;Binbir, Ergun;Akkaya, Yilmaz;Ilki, Alper
    • Structural Engineering and Mechanics
    • /
    • 제69권1호
    • /
    • pp.77-93
    • /
    • 2019
  • Although much research has been carried out using recycled aggregates sourced from normal strength concrete, most of the buildings to be demolished are constructed with low strength concrete. Therefore, the properties of the concrete incorporating recycled aggregates, sourced from the waste of structural elements cast with low strength concrete, were investigated in this study. Four different concrete mixtures were designed incorporating natural and recycled aggregates with and without fly ash. The results of the mechanical and durability tests of the concrete mixtures are presented. Additionally, full-scale one-way reinforced concrete slabs were cast, using these concrete mixtures, and subjected to bending test. The feasibility of using conventional reinforced concrete theory for the slabs made with structural concrete incorporating recycled aggregates was investigated.

유리섬유쉬트로 전단보강된 저강도 RC보의 전단강도 (Shear Strength of Low-Strength RC Beams Strengthened with Glass Fiber Sheets)

  • 유영찬;최기선;김도겸;류금성;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.283-286
    • /
    • 2005
  • The effectiveness of shear strengthening with glass fiber sheets on normal or low strength RC beams have been investigated experimentally. A design compressive strength of concrete of 13.5MPa has been planned considering the degradation state of the existing structure to be strengthened in this study. Also, concrete surface reinforcing agent was applied to increase bond capacity between concrete and GFRP sheets in case of low strength RC beams. Comparing the test results of low and normal strength beams strengthened with GFRP sheets indicated that total shear capacity of beams was decreased with concrete strength decreased, but the shear strengthening capacity of GFRP sheets are hardly affected by concrete strength. In addition, shear strengthening effects of RC beams strengthened with GFRP sheets can be estimated by $\rho_w{\cdot}f_w$ based on the maximum effective strain of FRP sheet proposed by ACI 440.2R recommendation.

  • PDF

Compressive strength behaviour of low-strength hollow concrete block masonry prisms

  • Syiemiong, Hopeful;Marthong, Comingstarful
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.689-699
    • /
    • 2021
  • The present study aims to understand the behaviour of low-strength masonry prisms constructed with locally-produced low-strength hollow concrete blocks. Compression tests were conducted on masonry prisms constructed with three different mortar grades of cement-sand ratios of 1:3, 1:4.5 and 1:6 representing strong, moderately strong and weak mortar. Stress-strain curves were generated from the test results for the masonry prisms. The hollow concrete masonry units employed in this study are some of the weakest as compared to other masonry units employed by other researchers. The compressive strengths for masonry prisms with mortar grades 1:3, 1:4.5 and 1:6 are 2.21 MPa, 2.19 MPa and 2.25 MPa respectively. The results indicate that the masonry compressive strength of such low-strength hollow concrete block masonry prisms is not influenced by the mortar strength. Simple relationships to estimate the modulus of elasticity and compressive strength of masonry prisms is also proposed.

고강도 콘크리트의 실용화를 위한 연구 (A Study for the Application of High-Strength Concrete)

  • 이장화;유영찬;민병렬;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.140-145
    • /
    • 1991
  • Tests were conducted to get a mix proportioning of high strength concrete between σ28 and (C/W) using low quality materials easily purchased in situ. Superplasticizer was used as a chemical admixture to compensate low slump of base concrete keeping it up about 15±2㎝. General material properties such as modulus of elasticity, poisson's ratio, unit weight and stress-strain characteristic of high strength concrete were obtained. Test results show that mix proportioning of high strength concrete proposed in this paper have reasonable validity and these can be used as a design criteria in high strength concrete construction.

  • PDF

플라이애시를 함유한 고강도 콘크리트의 조기 강도와 속도 발현 특성 (Characteristics of Early Strength and Velocity Development in High Strength Concrete Containing Fly Ash)

  • 이회근;윤태섭;이광명
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.43-48
    • /
    • 2001
  • The use of fly ash in cement and concrete industries has many benefits including engineering, economic, and ecological aspects. However, it has a disadvantage of low strength development, especially at early ages. In this study, in order to overcome this problem, the early strength accelerating agent($NA_{2}$ $SO_{4}$) was selected and applied to the production of high strength concrete(HSC) containing fly ash. It was found that the compressive strength of fly ash concrete incorporating TEX>$NA_{2}$ $SO_{4}$ has greater than that of concrete containing fly ash only until 7 days after casting. From the microstructural point of view, ettringite increased and pores decreased in fly ash concrete incorporating TEX>$NA_{2}$ $SO_{4}$ , leading to the development of early age strength. It was also found that the velocity vs. strength relationship of HSC is considerably different from that of low-strength concrete(LSC). Therefore, in order to predict early age strength of HSC, a estimation equation different from that for LSC is needed.

  • PDF

Bond strength prediction of steel bars in low strength concrete by using ANN

  • Ahmad, Sohaib;Pilakoutas, Kypros;Rafi, Muhammad M.;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.249-259
    • /
    • 2018
  • This paper presents Artificial Neural Network (ANN) models for evaluating bond strength of deformed, plain and cold formed bars in low strength concrete. The ANN models were implemented using the experimental database developed by conducting experiments in three different universities on total of 138 pullout and 108 splitting specimens under monotonic loading. The key parameters examined in the experiments are low strength concrete, bar development length, concrete cover, rebar type (deformed, cold-formed, plain) and diameter. These deficient parameters are typically found in non-engineered reinforced concrete structures of developing countries. To develop ANN bond model for each bar type, four inputs (the low strength concrete, development length, concrete cover and bar diameter) are used for training the neurons in the network. Multi-Layer-Perceptron was trained according to a back-propagation algorithm. The ANN bond model for deformed bar consists of a single hidden layer and the 9 neurons. For Tor bar and plain bars the ANN models consist of 5 and 6 neurons and a single hidden layer, respectively. The developed ANN models are capable of predicting bond strength for both pull and splitting bond failure modes. The developed ANN models have higher coefficient of determination in training, validation and testing with good prediction and generalization capacity. The comparison of experimental bond strength values with the outcomes of ANN models showed good agreement. Moreover, the ANN model predictions by varying different parameters are also presented for all bar types.

Uniaxial Compression Behavior of High-Strength Concrete Confined by Low-Volumetric Ratio Lateral Ties

  • Hong Ki-Nam;Han Sang-Hoon
    • 콘크리트학회논문집
    • /
    • 제17권5호
    • /
    • pp.843-852
    • /
    • 2005
  • Presently, test results and stress-strain models for poorly confined high-strength columns, more specifically for columns with a tie volumetric ratio smaller than $2.0\%$, are scarce. This paper presents test results loaded in axial direction for square reinforced concrete columns confined by various volumetric ratio lateral ties including low-volumetric ratio. Test variables include concrete compressive strength, tie yield strength, tie arrangement type, and tie volumetric ratio. Local strains measured using strain gages bonded to an acryl rod. For square RC columns confined by lateral ties, the confinement effect was efficiently improved by changing tie arrangement type from Type-A to Type-B. A method to compute the stress in lateral ties at the concrete peak strength and a new stress-strain model for the confined concrete are proposed. Over a wide range of confinement parameters, the model shows good agreement with stress-strain relationships established experimentally.