Acknowledgement
Authors are thankful to Mr. Rahkupar Wanshnong, Technician, Department of Civil Engineering, NIT Meghalaya for his enormously help during casting and testing of the specimens.
References
- Akinwumi, I.I., Domo-Spiff, A.H. and Salami, A. (2019), "Marine plastic pollution and affordable housing challenge: Shredded waste plastic stabilized soil for producing compressed earth bricks", Case Stud. Constr. Mater., 11, e00241. https://doi.org/10.1016/j.cscm.2019.e00241.
- ASTM C 109/C 109M (2007), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM International, USA.
- ASTM C 1314 (2007), Standard Test Method for Compressive Strength of Masonry Prisms, ASTM International, USA.
- Basha, S.H. and Kaushik, H.B. (2015), "Evaluation of nonlinear material properties of fly ash brick masonry under compression and shear", J. Mater. Civil Eng., 27(8), 04014227. https://doi.org/10.1061/(asce)mt.1943-5533.0001188.
- Castro, I.G., Laursen, P.T., Jansen, D.C. and Qu, B. (2014), "Performance of interlocking compressed earth block infill in confined masonry construction", 10th U.S. National Conference on Earthquake Engineering, Anchorage, AL, USA.
- Costigan, A., Pavia, S. and Kinnane, O. (2015), "An experimental evaluation of prediction models for the mechanical behavior of unreinforced, lime-mortar masonry under compression", J. Build. Eng., 4, 283-294. https://doi.org/10.1016/j.jobe.2015.10.001.
- da Porto, F., Mosele, F. and Modena, C. (2011), "In-plane cyclic behaviour of a new reinforced masonry system: Experimental results", Eng. Struct., 33(9), 2584-2596. https://doi.org/10.1016/j.engstruct.2011.05.003.
- EN 1996-1-1 (2005), Design of Masonry Structures-Part 1-1: General Rules for Reinforced and Unreinforced Masonry Structures, European Committee for Standardization, Brussels.
- Ferretti, D. (2020), "Dimensional analysis and calibration of a power model for compressive strength of solid-clay-brick masonry", Eng. Struct., 205, 110064. https://doi.org/10.1016/j.engstruct.2019.110064.
- Ferretti, D., Michelini, E. and Rosati, G. (2015), "Mechanical characterization of autoclaved aerated concrete masonry subjected to in-plane loading: Experimental investigation and FE modeling", Constr. Build. Mater., 98, 353-365. https://doi.org/10.1016/j.conbuildmat.2015.08.121.
- Gumaste, K.S., Rao, K.S.N., Reddy, B.V.V. and Jagadish, K.S. (2007), "Strength and elasticity of brick masonry prisms and wallettes under compression", Mater. Struct., 40, 241-253. https://doi.org/10.1617/s11527-006-9141-9.
- Huang, L., Liao, L., Yan, L. and Yi, H. (2014), "Compressive strength of double H concrete block masonry prisms", J. Mater. Civil Eng., 26(8), 06014019. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001084.
- IS 1905 (1987), Code of Practice for Structural Use of Unreinforced Masonry, Bureau of Indian Standards, New Delhi.
- Jasinski, R., Drobiec, L. and Piekarczyk, A. (2016), "Mechanical properties of masonry walls made of calcium silicate materials made in Poland. Part 1. Masonry properties and compressive strength", Procedia Eng., 161, 904-910. https://doi.org/10.1016/j.proeng.2016.08.755.
- Kaushik, H.B., Rai, D.C. and Jain, S.K. (2007), "Stress-strain characteristics of clay brick masonry under uniaxial compression", J. Mater. Civil Eng., 19(9), 728-739. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:9(728).
- Khalaf, F.M. (1996), "Factors influencing compressive strength of concrete masonry prisms", Mag. Concrete Res., 48(175), 95-101. https://doi.org/10.1680/macr.1996.48.175.95.
- Koksal, H.O., Karakoc, C. and Yildirim, H. (2005), "Compression behavior and failure mechanisms of concrete masonry prisms", J. Mater. Civil Eng., 17(1), 107-115. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:1(107).
- Kumar, S. (2002), "A perspective study on fly ash-lime-gypsum bricks and hollow blocks for low cost housing development", Constr. Build. Mater., 16(8), 519-525. https://doi.org/10.1016/S0950-0618(02)00034-X.
- Masonry Standards Joint Committee (2013), Specification for Masonry Structures.
- Mohamad, G., Fonseca, F.S., Vermeltfoort, A.T., Martens, D.R.W. and Lourenco, P.B. (2017), "Strength, behavior, and failure mode of hollow concrete masonry constructed with mortars of different strengths", Constr. Build. Mater., 134, 489-496. https://doi.org/10.1016/j.conbuildmat.2016.12.112.
- NZS 4230 (2004), Design of Reinforced Concrete Masonry Structures, Standards Association of New Zealand, Wellington, New Zealand.
- Quiroz, L.G., Maruyama, Y. and Zavala, C. (2014), "Cyclic behavior of Peruvian confined masonry walls and calibration of numerical model using genetic algorithms", Eng. Struct., 75, 561-576. https://doi.org/10.1016/j.engstruct.2014.06.035.
- Sajanthan, K., Balagasan, B. and Sathiparan, N. (2019), "Prediction of compressive strength of stabilized earth block masonry", Adv. Civil Eng., 2019, Article ID 2072430. https://doi.org/10.1155/2019/2072430.
- Sarhat, S.R. and Sherwood, E.G. (2014), "The prediction of compressive strength of ungrouted hollow concrete block masonry", Constr. Build. Mater., 58, 111-121. https://doi.org/10.1016/j.conbuildmat.2014.01.025.
- Singh, S.B. and Munjal, P. (2016), "Bond strength and compressive stress-strain characteristics of brick masonry", J. Build. Eng., 9, 10-16. https://doi.org/10.1016/j.jobe.2016.11.006.
- Syiemiong, H. and Marthong, C. (2019), "Effect of moisture on the compressive strength of low-strength hollow concrete blocks", Comput. Concrete, 23(4), 267-272. https://doi.org/10.12989/cac.2019.23.4.267.
- Thaickavil, N.N. and Thomas, J. (2018), "Behaviour and strength assessment of masonry prisms", Case Stud. Constr. Mater., 8, 23-38. https://doi.org/10.1016/j.cscm.2017.12.007.
- Thamboo, J.A. and Dhanasekar, M. (2016), "A comparative study of the compression behaviour of thin layer mortared and conventional masonry", Brick and Block Masonry: Trends, Innovations and Challenges-Proceedings of the 16th International Brick and Block Masonry Conference, IBMAC 2016, 1929-1938.
- Tomar, A., Paul, D.K. and Agarwal, P. (2017), "Compression and cyclic shear behavior of lime mortar brick masonry", J. Earthq. Tsunami, 12(1), 1750015. https://doi.org/10.1142/S1793431117500154.
- Tomazevic, M. and Gams, M. (2012), "Shaking table study and modelling of seismic behaviour of confined AAC masonry buildings", Bull. Earthq. Eng., 10, 863-893. https://doi.org/10.1007/s10518-011-9331-x.
- Turkel, S. and Aksin, E. (2012), "A comparative study on the use of fly ash and phosphogypsum in the brick production", Sadhana-Academy Proc. Eng. Sci., 37(5), 595-607. https://doi.org/10.1007/s12046-012-0099-8.
- Wang, L., Sun, H., Sun, Z. and Ma, E. (2016), "New technology and application of brick making with coal fly ash", J. Mater. Cycl. Waste Manage., 18(4), 763-770. https://doi.org/10.1007/s10163-015-0368-9.
- Wu, F., Li, G., Li, H.N. and Jia, J.Q. (2013), "Strength and stress-strain characteristics of traditional adobe block and masonry", Mater. Struct., 46(9), 1449-1457. https://doi.org/10.1617/s11527-012-9987-y.
- Yang, K.H., Lee, Y. and Hwang, Y.H. (2019), "A stress-strain model for brick prism under uniaxial compression", Adv. Civil Eng., 2019, Article ID 7682575. https://doi.org/10.1155/2019/7682575.
- Yu, H., Zheng, L., Yang, J. and Yang, L. (2015), "Stabilised compressed earth bricks made with coastal solonchak", Constr. Build. Mater., 77, 409-418. https://doi.org/10.1016/j.conbuildmat.2014.12.069.
- Zhou, Q., Wang, F., Zhu, F. and Yang, X. (2017), "Stress-strain model for hollow concrete block masonry under uniaxial compression", Mater. Struct., 50(2), 106. https://doi.org/10.1617/s11527-016-0975-5.
- Zhou, X., Song, J., Jiang, X. and Xu, D. (2014), "Experimental study on compressive mechanical performance of fly-ash thermal insulation hollow block masonry", Appl. Mech. Mater., 488-489, 643-646. https://doi.org/10.4028/www.scientific.net/AMM.488-489.643.